Dolski Rejestr Statkéns

Technical Report No. 72

The Stability of a Freely Floating Ship

Final report

Maciej Pawtowski

2" edition, revised and updated

Gdansk, January 2016



CONTENT

A B S T R A T ettt e e e e e et ettt eeeeae et et et e aar b b as 2
1. INTRODUGCTION. ...ttt e s e e e e e e e e e et e e e et sbabe s n e e e e e e e e e aeeaeas 3
2. HISTORICAL OUTLINE ...ttt et e e e e et enmmnesss b s 3
3. FORMULATION OF THE PROBLEM .....cootttiiiiiii e 4
4. STABILITY CHARACTERISTICS ...ttt ee e e e e 8
4.1. BaSIC relationNShiPs ......coooiiiiiiiiiiie e 8
o o] 11T = o PP 13
4.3. Calculation of moments of INErtia.......cceeeeiiiiiiiiiiiii e 14
4.4. Metacentric radii. AXis Of floatation.....e...oooeiiiiiiiiiiiiiiii e 17
4.5. Mechanism of equi-volume inCliNationNS............couviiiiiiiiiiiie e 23
4.6. PropertieS Of thBZ-CUINVE ..........oooiiiiie e 27
4.7. Cross-curves of Stability.........ooo oo 28
5. KINEMATICS OF A FREELY FLOATING SHIP .....uuuiiiiiiieeee e 30
6. GZ-CURVE OF MINIMUM STABILITY ettt 34
7. NUMERICAL EXAMPLES ... it n e e e 38
A T 1 o1 PR 39
N F- 1ot QU | o I o 1 PP 44
8. CONCLUSIONS. ... .ottt ettt sa e e e e e e e e e e e e e et e eesaeennneeeeesebnnnnnnn s 54
ACKNOWLEDGEMENTS ... .ttt sttt e e e e e e e aaaaaeaaeeeaaaas 55
REFERENGCES ... .ttt s e e e eee e e e e s e e e e e e e e aaeeeeeennnees 55
NOMENCLATURE ...ttt e e e e e e e e e e e e e e eeeeeeeeseerennnnns 58
Abstract

The report presents the problem of calculatingrilghting arms (GZ-curve) for a freely
floating ship, longitudinally balanced at each heelgle. In such cases the GZ-curve is
ambiguous, as it depends on the way the ship @nball. Three cases are discussed: when
the ship is balanced by rotating her around thedraf water in the midships, around a normal
to the ship plane of symmetry, and around a notm#ie initial waterplane, fixed to the ship,
identical with minimum stability. In all these cad@e direction of the righting moment in
space and the area under the GZ-curves, whicheisotlvest possible, are preserved. Angular
displacements (heel and trim) are the Euler's angédated to the relevant reference axis.
The most important features of the GZ-curve wigke firim are provided. Exemplary cal-
culations illustrate how the way of balancing aftethe GZ-curves.

This report concludes the theory presented in R8 Pechnical Reports No 34/99, 46/02 and
in publication [7].

Last update: 26 |1 2016
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1. INTRODUCTION

The GZ-curve is the basis for the assessment of shiplistabor intact ships classification
societies require th&Z-curve to be calculated at level keel. Until rebehbwever, they did
not clearly state which mode of calculations shduddemployed for damaged ships, which
often led to significant discrepancies in the cltadGZ-curves.

For the intact ship it is practically meaningledsclk mode of calculations is employéoted
trim, constant during heeling, warying trimas for a freely floating ship, which changes trim
depending on longitudinal equilibrium. This is doea minor asymmetry of the ship relative to
the midships. However, for the damaged ship theeafccalculations proves to be impor-
tant, as it markedly affects tli&€Z-curve after the immersion of the deck edge in wggure
1). The righting arnGZ means here the distance between the lines ofracfibuoyancy and
gravity forces at a given heel angle in still water
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Figure 1. Effect of th€&Z-curve calculation mode for a damaged platform [1]

In the case of flooding end compartments the imibgeof the calculations mode is particu-
larly important due to the high longitudinal asynimef the waterplane and the small angle
of deck edge immersion in the water. This influesitengly increases with the decrease of the
ratio L/B. Hence, this impact increases for catamarans, SM/E&mall waterplane area twin
hulls), semi-submersible platforms, and jack-up.rig

It can be demonstrated, which will be shown lateaf theGZ-curve with free trim is equal
to or smaller than that for a fixed trim, as shawrkigure 1. For this reason, tk&Z-curve
should be obligatorily calculated for a freely fiiog ship. In such cases, however, we face the
problem of understanding the angle of heel, as hén an ambiguous notion, manifested in
various definitions of this angle and, hence, wsiGZ-curves.

The stability of a freely floating ship is a reladly new issue, explored mainly by Vassalos
et al[2], van Santen [3], the author [4-7], and others.

2. HISTORICAL OUTLINE

Why a body floats in liquids had already been knawantiquity since the times of Archimedes
(around 287-212 BC). However, how to assess argsiigate the stability of floating bodies
had not been known until the discovery of the Newdo laws. In 1746 Bouguer introduced
the notion of the metacentre and the metacentighhas a measure of initial stability [8]. In
1749 Euler delivered the equation for the metaterdadius, and a theorem on the equi-volume
waterplanes. In 1796 Atwood published a methodcc&beculating the righting arm for a given
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heel angle, based on a shifted wedge volume mg&hdd]. From this method it follows that
freeboard is crucial for the stability of ships.iétheless, for over a hundred years only the
initial metacentric heighty = GM was used for assessing ship stability. It is $itgbelated
accidents at the end of the XIX century that le@ twonclusion that the use of t6#M as the
sole criterion is far insufficient for the apprdisé stability, and pointed to the importance of
freeboard and th&Z-curve.

The metacentric height, which otherwise is an irtgrarindex of stability, allows neither
for direct estimation of the stability range, nlbe tmaximum righting lever. In this context the
widely described sinking of HMEaptainin 1870 is worth mentioning, with her metacentric
height ofh, = 0.79 m [11]. The ship capsized during a storm in thg &aBiscay, whereas the ac-
companying battleshipMonarch of a similar size and characteristics, survivesl storm un-
harmed, despite a smaller metacentric hdight0.73 m. The fact was very surprising for the
naval architects at that time. It is very easyxplain the accident, if one observes the very
different freeboards of the two ships: Baptainhad a freeboarfl = 1.98 m, while theMon-
arch had a freeboartl = 4.27 m. As a result, despite the smaller metacentrightetheGZ-
curve of theMonarchhad much better parameters than that ofGhptain whoseGZax=
0.55 m instead 00.25 m, @nax = 40°, instead ofl9°, and the range of stability = 70°, instead
of 54°,

The Captain’sdisaster gave evidence that the metacentric heiginte is an insufficient
measure of stability safety and made it necessapay attention to the stability of ships at
large angles of heel. As a result, at the end efXlX century the curve of righting arms
(GZ-curve) began to be widely used for the assessofesttip stability, termed also theed’s
curve in memory of their propagator [12]. The fi&f-based stability criteria appeared as late
as in 1939, provided by Rahola [13]. These aremagendations on minimum values of some
parameters related to tk&Z-curve, extracted from the analyses of @&curves for ships that
capsized during service and for those regardedfas At the end of the 1960s the said criteria
were adopted by IMCO (Intergovernmental MaritimenQdtative Organisation, established in
1958), presently IMO (International Maritime Orgsatiion since 1982), and they are in force
until today [14].

Though theGZ-curve had been used for stability assessmenttadtiships for more than
a century, the stability of damaged ships untiergly had been assessed with the metacentric
height and freeboard. The previous SOLAS convestioare happy with the residual freeboard
as low as three inches and the metacentric hefdghtooinches. With such parameters, (h&
curves are marginal. A change took place as late 8890, when th&Z-curve was standard-
ised with the help of SOLAS 90 criteria [15]. Hoveeythese criteria did not provide real pro-
gress, as they were introduced by purely admitistraecisions, not supported by any studies.
Hence, they had alleged rather than real link timehsafety in damaged condition. A breakthrough
took place in 1995 with the revealing of a mechangd ship capsizing in damaged condition
[16—19]. The mechanism makes it possible to lirkdhtical sea state and damaged stability at
the moment of capsizing applying only static cadtiohs, like for calculating th&Z-curves.

3. FORMULATION OF THE PROBLEM

Almost all widely known methods for calculating t6&-curve assume the ship at level keel.
This means indirectly that the centre of buoyaRdg supposed to be free of longitudinal dis-
placements, i.e., when the ship heels it movestlstin a frame plane. There was no need for
considering earlier a different situation, as @&curves were calculated solely for intact ships,
for which the foregoing assumption is almost ideahlid. However, in situations when the
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centre of buoyancy undergoes longitudinal displaa@s) which takes place when the water-
plane is asymmetric with respect to the plane tdtron (i.e., of large cross-product moment),
this fact cannot be any longer ignored and theutalions have to be carried out for a freely
floating object, longitudinally balanced. Deterntioa of theGZ-curve in such cases becomes
ambiguous and the problem has to be fine-tunecelsrihining the way the ship is balanced.

It is worth emphasising that angular rotations &realy floating object go beyond the basic
ship theory. In the classic ship theory G&-curve is determined for a ship with fixed trimype
forming a rotation of one degree of freedom. TRism elementary rotation, understood by
everybody. Meanwhile a freely floating ship varitstrim during heeling, that is to say, it
performs a rotation of two degrees of freedom, muonciie intricate. For this reason, and to
make the calculations easier vector calculus isieghn this work.

Orientation of a body in space is defined by tlitaker's angles, related to a givesference
axis. In the case of a freely floating ship, twddfs angles are used, as the third one, describ-
ing the azimuth (orientation of the ship relatigettie wind direction) is irrelevant, as by defini-
tion the azimuth is constant. One of the two anglags the role of the angle of heel, while the
other — the angle of trim. In the subject literatthrey are frequently called generalised heel and
trim angles. The Euler’'s angles are degrees ofltnee i.e. they can be changed independently
of each other. A plane normal to the reference laagsno name in mechanics; for convenience
we will call it thereferenceplane One rotation is around the reference axis, amater around
theline of nodes NN.e. the trace of water at the plane of referdrtgure 2).

Figure 2. Euler's angles

The reference axis is customarily one of the akéiseoco-ordinate system. There are then three
possible reference axes, three reference planesahto them, and three lines of nodes. It is
worth remembering, however, that a reference aisbe any axis, if necessary.

When a line of nodes is the trace of water in tieiships, the Euler’s angles are related to the
x-axis, normal to the midships, denoted¢bgind®. The first one is the angle of heel, i.e. the
angle of inclinations of the trace of water in thelships relative to theg-axis, while the other
one is the trim angle, i.e. the angle of inclinataf thex-axis with respect to the horizontal
(sea level). The reference plane is any frame fstaéion), not necessarily the midships. If the
ship is trimmed in an upright position, the Euleaiggles are related to tkeaxis, normal to
vertical frame planes, denoted @gyand®@'. The first one is the angle of inclinations of thece
of water in the vertical frame planes relativehey-axis, while the other one is the angle of
inclination of thex'-axis with respect to a horizontal plane. The ealtirames are deviated from
the regular frames by the angle of initial tigand incline together with the ship.
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When a line of nodes is the trace of water in tBetRe Euler's angles are related to yhe
axis, normal to the PS, denoteddpgind®. The first one is the angle of heel, i.e. the argjl
rotation of the PS around the trace of water, etjutiie angle of inclination of theaxis with
respect to a horizontal plane (sea level), whigedther one is the angle of trim, i.e. the angle
of rotation of the PS around tlgeaxis. Contrary to the previous case, the trimhefghip in an
upright positionp = 0, does not affect the meaning of the two anglestation.

When a line of nodes is the trace of water in tiigal waterplane (waterplane in an upright
position that inclines together with the ship), Eader’s angles are related to thexis, normal
to the initial waterplane (when the ship in an gbtiposition at level keel, the reference axis is
the z-axis, normal to the BP). The Euler's angles areotk bya' andd' or bya and9d, respec-
tively. The first one is the angle of heel, i.ee ingle of rotation of the initial waterplane ardun
the line of nodes, equal to the angle of deviatibthe z-axis from the vertical. The other one
is the angle of trim, termed also thegle of twistor azimuth i.e. the angle of rotation of the
initial waterplane around theaxis, equal to the angle between the traces ofvaatd PS in
the initial waterplane. The reference plane is alsp plane that is parallel to the initial water-
plane. For a ship at level keel this can be inipagr the BP.

For a ship heeled with fixed trim, all the thregl@s of heel are the same, ipe= @ =o',
while the trim angles vanish, i.8.=6 =3 =0. If a ship is not restrained, then at a given heel
angle, she will assume a trim to be longitudi-
nally balanced. In the first case, she will trim
(rotate) vertically around the trace of water in
a vertical frame (Figure 3), in the second —
around they-axis (Figure 4), and in the third
case — around the-axis (Figure 5). In the last
two cases the ship trims in oblique planes.

Note that for the trim angl® = 90° the
angle¢' looses the meaning of the angle of
heel, while for the angle = 90° the trim an-
gle 6 is indeterminate. Only for the reference
axisOz', both angles do not loose their mean-
ing, when they assume a valgs.

Longitudinal balance occurs when the cen-

Figure 3. Vertical trimming of the ship  tré of buoyancy is at a vertical plane, termed

the plane of rotation passing through the cen-

tre of ship gravity. In the first case, the saidnd isparallel to the line of nodes, while in the
two other cases perpendicular As the line of nodes is fixed in space, the dioecof the
righting moment is also fixed in space (which doaes mean it is fixed relative to the ship
coordinate system). Hence, the curve of centreiofdncy is strictly flat, lying in the plane of
rotation (for a ship with fixed trim, the said caris a projection of a spatial curve on the plane
of rotation). A unit vector, normal to the planerofation, termed thaxis of rotation denoted
further down byg, is also fixed in space.

Calculations of th&Z-curve with free trim are carried out under théol@ing assumptions:

a) The ship is inclined by a pure heeling momentngcstatically.lt means that ship in-
clinations are equi-volume;

b) The vector of the heeling moment is strictly hortab Otherwise, the heeling moment
would have a vertical component that would rotageghip around its vertical axis;

c) The vector of the heeling moment is normal to theeof rotation Otherwise, the ship
would not be longitudinally balanced;
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d) At each heel angle the ship is in static equilibrji.e. the sum of forces and moments
acting on her vanish. Hence the ship's weight usleg her buoyancy, i.€ = D, and the static
heeling moment is balanced by the righting mométh® opposite direction;

e) The righting moment is formed by a couple of farcesthe gravity force applied in the
ship's centre of gravity and the buoyancy forcesipgsthrough the ship's centre of buoyancy.
These forces are equal to each other and of oppdis#ction to each other. The moment vector
is horizontal and normal to the plane of rotation.

The above assumptions yield some consequences:

Figure 4. Oblique trimming around tlgeaxis Figure 5. Oblique trimming around the@xis

1. For inclinations with fixed trim the centre of buamecy need not be in the plane of rota-
tion, therefore the moment acting on the ship lmasamstant direction in the horizontal plane;
2. The righting levet = GZis the arm of the couple forming the righting moeneas-

ured in the plane of rotation; the said arm isracfion of the angle of rotatiom of the plane
of rotation around the axis of rotatienThe angle of rotation depends on the referente ax
In the second casg= ¢, in the third casgq = a'. In the first casq < ¢, and the relationship is
more involved.

3. Since orientation of the ship relative to the plaheotation is ambiguous, as it depends
on the adopted line of nodes and related methdalahcing, therefore th@Z-curves are also
ambiguous. The trace of water in the PS (Figuries &ppropriate for intact ships, as it ideal-
ises the direction of the wind heeling moment. && ¢ther hand, the edge of intersection of
the initial waterplane with the waterplane is agpiate for damaged ships, where the heeling
moment is created by gravitational forces, assumimgmum potential energy at the position
of equilibrium. In the case of objects arbitraolyentated to wind direction (e.g. semi-submersible
units) the PS should be replaced by a wind impaees), perpendicular to the wind direction
at an initial position and rotating together wikle tobject. The Euler's angles are related to the
systemOX'y'z, fixed to the wind screen.

4. It can be seen that the projection of yhaxis on the horizontal plane is perpendicular to
the trace of water in the PS. Hence, this lineafes strictly corresponds to the direction of the
heeling moment due to a shift of cargo in the shiainsverse plane. It applies also to the heel-
ing moment of ro-ro vessels in damaged conditiesullting from the accumulation of water on
the car deck when a symmetrical compartment has fieeded in the midships. For the same
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reason th&Z-curve measured by means of the Di Belli methastristly consistent with the
above model of inclinations. In this method, a hegjle of ship model is measured, induced
by shifting a weight along an arm perpendiculathi® PS, identical with the inclination of the
arm relative to the horizontal plane.

5. As the righting moment is all the time perpendicttathe plane of rotation, work done
by the righting moment is the integral of the momeith respect to the angle of rotation of the
plane of rotatiom, identical with the heel angle, dependent on ite ¢f nodes. At the same
time, this is the least work which is to be perfednn order to heel the ship up to a given heel
angle. In other words, for the ship with fixed tronnot fully balanced, work of the righting
moment is larger.

4. STABILITY CHARACTERISTICS

A number of stability characteristics, of basic omance for a freely floating ship will be dis-
cussed here, such as the angle of rotation, riglarm, moments of inertia of the waterplane
(understood as a cross-section of the ship huthbylat surface of the sea), metacentric radii,
axis of floatation, and cross curves of stabilfe will begin by a description of the waterplane,
arbitrarily inclined, which is independent of tHeoace of reference axis.

4.1. Basic relationships

A right hand-side co-ordinate syst&myz shown in Figure 6, fixed to the ship, is assunide:
origin O is identical with poinK, thex-axis is directed forward, theaxis — portside, and the
z-axis — upwards. An arbitrarily inclined waterplaas any plane can be described by the equation:

z=T, + xtan® + ytand (2)

N
N\ T
-

o

Figure 6. Analytical and Euler's angles of inclirveaterplane

in which three independent parameters appearitie af inclination of the trace of wat@in

the PS relative to theaxis, the angle of inclination of the trace of ardt in the midships sec-
tion relative to thg-axis, and the draugft of thez-axis. The two angleg andé are termed
theanalytical anglesThey are positive if a positive incrementxadr y corresponds to a posi-
tive increment og, as in Figure 6. Hence, the trim an@le 0 is positive, if the ship is trimmed
by bow, while the angl$ > 0 is positive, when the ship is heeled portsidd={gure 3, 4 and 5
the ship is inclined to starboard, therefore thel la@gles are negative in these figures). Both
angles are easy to measure, a® tat/L,,, and tagp = AT z/B, wheret = ATgsis a trim, i.e.
the difference of draughts at the bow and sterpegoeticulars, andT,y is the difference of
draughts at portside and starboard in the midstepson.
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The waterplane, shown in Figure 6, forms with tlenes of the system a rectangular tetra-
hedron of height,, as in Figure 7, bounded by the traces of watgtl{b sea level). The in-
clination angle® and?d of the traces of water in the PS and BP relatviiéx-axis are the an-
gles of trim, depending on the line of nodes (thgl@® is not shown in the figure).

47

Figure 7. Tetrahedron

It is known from analytical geometry that a veatormal to the waterplane, as given by equa-
tion (1), is:R = (tang, tanp, —1), which is directed downwards, and whose absoalige is:

R=v1+tarfg + tarf$

Hence, the unit vector, normal to the waterpland, @rected upwards, equals- -R/R.

The angle between planes is the same as betwetms/aormal to them. Hence, the angle
a between the waterplane and BP, or an upright piatee, is given by the equation: aos
k. Therefore, cas= 1/R = 1/(1 + tarf8 + tarfp)”2 Thus, the following is obtained:

tana = Vtarfo + tarfo (2

The sign of the angle is the same as that of the ang)lélaking into account thatR = cosx,
components of the unit vectar= -R/R are as follows:

n = (-tan cosu, —tan cosa, co) 3)

In a similar manner it is possible to find the anigetween the waterplane and PS, denoted by
d. This is an angle between the unit vectoend-j. Hence, co§ = -j [h = —ny = tand cCos.

The trim angle related to the aXi, i.e. the angl®, is equal to the angle of inclination of
thex-axis relative to the surface of the sea. Hencg(@0d+ ©) =i [ih = ny, which is equivalent
to sin®@ = cosutand, or even simpler

tan® = cosp tand 4)

The angle of heel related to the trace of wateh&PS, denoted ly is equal to the angle of
inclination of they-axis relative to the surface of the sea. Hence@©0d + ¢) = j [h = ny, which
is equivalent to siqp=—ny = tanp cosu, or even simpler
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tanp = covtan 5)

We can see that cdsnd sinp are the same, which means that the angle of gotin of the
waterplane relative to the PS is a complement@ftiglep to the right angle, i.é=90° - @.

It is worth noting that the anglg< a, which follows immediately from the identity cns
cosBcosp, which is obtained by dividing sinby tanp. From equation (5) it follows moreover
that the angle < ¢. Hence, the heel angieis never greater than the angleor the angle.
However, bearing in mind that the vertical trim &n@ is below1°, even for the largest trim,
the differences between the heel anglgsanda are imperceptible.

The angle of inclination of the trace of water e BP relative to the-axis, denoted b§,
is the slope (gradient) of the line in a plarreconst From equation (1) we get immediately that

tand = —tanB/tand (6)

In an upright position, fop = 0, equation (6) is indeterminate. In such a case0. Equiva-
lent forms of equation (6) are as follows: &in-tané/tana, cos} = tang/tana.

It is worth noting that traces of water in the P anidships (or any frame plane), shown in
Figure 6 and Figure 7, are not generally perpemaiane to another. The angle between them
can be easily found with the help of the unit vextaf both traces, ande, (Figure 7); they both
look at the same directions, as theandy-axes. Denoting the angle between the unit vectors
by B, then co$ = e, [&, where the unit vector of the trace of water | B8e, = (cos, 0, sirD),
while the unit vector of traces of water at frantengse, = (0, cosp, sind). Hence,

cos = sinBsing (7

When both analytical angles are of the same signahgle between the unit vectors is acute
(which is also seen in Figure 6 and 7). Otherwtise angle is obtuse.

a) Effect of the initial trim

If the ship has the initial trirfl, in an upright position, the Euler’'s angles arated to the co-
ordinate systemdxyz, as in Figure 8. The ax{3x is horizontal, i.e. parallel to the sea level,
while the axigOZ'is vertical, i.e. normal to the sea level. Thaiahitrim does not change the
axisOy. Hence, it does not change the Euler’'s anglestetito this axis, while it changes them
for the two other axes. As previously, we wantxpress them in terms of the analytical angles
¢ ande.

y4 . .
/V z vertical frame section

BP Ko X
Figure 8. Co-ordinate system for a trimmed vessel

The reference plane for the axds is a vertical frame section, fixed to the shipyideed from
the regular frame planes by the initial trim an@j¢Figure 8); the anglé, > 0 is positive for
bow trim. The trim angl®, related to the axi®x, is equal to the angle of inclination of the
axis OX relative to the horizontal. Hence, ce®(+ @) = i'[h, wherei' = (cos,, 0, SinB,) IS

a unit vector of the axi®x. Hence, si® = -i'lh, which yields:
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Sin@ = (tg6 cosH, - SinBy) cCos (8)

If 8, =0, the above equation reduces to equation (4).

The heel anglé' is equal to the angle between traces of watettlamdhitial waterplane at
the reference plane (vertical frame section). Thi vector of the trace of watey at the
vertical frame section equals; = nxi'/sin(90° + @), while the other unit vector is identical
with unit vectorj of the axiOy. Therefore, cop = [&;, where

e = (nxi')/cos® 9)
Hence,
cosh' = (co, + Sinb,tgh) cosn/cosD (20)

When6,—0, ¢'— ¢, since co$' = con/cosw. Substituting for co® = cosu/cosh, in the
limit we get co®' = cosp, which impliesp' = ¢.

The reference plane for the axdg'is any plane parallel to the waterplane in angigrpo-
sition, fixed to the ship. Its unit normal vector= (-sing,, 0, coH,) is identical with a unit
vector of the axi©z. The heel angle' is given by the equation: ce's= kK [, which yields:

coxn' = (1 + tanB,tanB)cosh,cosu (12)

The trim angled’ (twist angle) is the angle between the tracesaiér and PS in the reference
plane (initial waterplane). The unit vectors ofdbdraces are as follows. = k' xn/sina’ and
i'. Hence, the twist angle is given by the equatiosSc=i' /W, which yields:

cosy' =i'Ik'xn)/sina’ = —ny/sina’ = tand cosa/sina’ (12)

The sign of the anglg' is opposite to the sign of the an@levhich follows from equation (6),
i.e. it is negative, when the trim is on the bofag,l= 0, thena' = a, while 8’ =8, which can be
easily shown. A change of the trim angle does ffectithe heel angle, which is not seen at
first glance. And this holds for any reference axis

b) Wind impact screen
Consider now the angles related towhed impact plangdeviated from the PS by an angle
termed theazimuth whereiny > 0, if it is anti-clockwise. A syster®X'y'Z is fixed to this plane,
rotated by the anglg around the axi®©Zz relative to the systei@xyz. By definition, the said
plane is perpendicular to the direction of the wiitheny = 0, it coincides with the PS.

The unit vectors" andj' of the systen©x'y'Z are rotated by the anglerelative to the unit
vectorsi' andj. Hence, taking their projections on the systensaxe get:

I" =i'coqy +jsing = (coBycosy, sing, sinB,cosy) (13)
j'=-i'sing +j cosp = (-coH,siny, cosy, —sinBysiny)

In the case of the reference aXisit is easier to find the final position of thejett by heeling it

first by an anglé' around the axi®x", described by the unit vectdr and next trimming it by
an angle®' around the trace of water in a plane normal eakisOXx", described by the unit
vectore;. As a result of the first rotation new unit veste} andk" are obtained:

e =j'cosd’ +k'sing' (14)
K" =k'cosd' —j'sing'

The second rotation aroumeglyields the unit vecton:
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n=Kk"cos® -i"sin® (15)

where the unit vectoli§ and;j' are given by equations (13). The angfeand® are the Euler’s
angles, related to the reference &g the latter results from longitudinal balancingloé ship.
In the case of the reference afig', normal to the wind impact plane, playing a rai¢he

reference plane, the line of nodes is the tracgatér in the said plang. This trace is at the
same time the axis of rotation, related to theregfee axigOy'. The unit vectoe; results from
trimming of the ship by the angtrelative to the axi©x". In other words, rotating the unit
vectorsi" andk' by the angl® around the axi®y' the unit vectoi" becomes the unit vector
e1, andk become«k’. Hence,

e =i"cos8 +k'sing (16)
k" =k'cos8 -i"sin8

Finally, the unit vecton results from the rotation of the ship (waterplaaejund the trace of
water in the wind impact plareg by an angle of heel, i.e. the angle of inclination of thygaxis
relative to the horizontal. Hence,

n =Kk"cosg - j'sing a7

The angle®' andg are the Euler angles, related to the reference@yi The former results
from longitudinal balancing of the ship. Whgr= 6, = 0, equation (17) reduces to equation (55).

For the reference ax@z, the line of nodes isgiventrace of water in the initial waterplane,
playing the role of the reference plane; the uedter of this trace is denoted Wy In an upright
position,w =1i". It is at the same time the axis of rotat@melated to this axis of reference.
Obviously,w = k' xn/sina’. It would seem that this equation cannot be used as the unit
vectorn is treated here as given, while the unit vestds resultant, whereas it should be the other
way round.

Note that in the case of the reference @@®sandOy' the azimuth is fixed in the course of
longitudinal balancing of the ship. However, theiation is different in the case of the refer-
ence axigDz, the trim angle¥, identical with the azimuth (Figure 6), varies. &hthe ship is
longitudinally balanced, for a given heel angléhe azimuth is the same, irrespective of the
direction of the axis of rotatioa (the tracen) at an upright position. Hence, the reference axis
Oz'is not related either to the wind impact screeR®r

Nonetheless, it is worth to know the unit vectorandw in terms of the Euler's angles
andy'. They are essential, if one would like to findstisy characteristics for an unbalanced
ship. The unit vecton results from the rotation of the ship (waterplaae)und the trace of
waterw on the initial waterplane by a heel anglewhereas the unit vecter of the trace of
water on the initial waterplane results from thition ofw around the unit vectd by a trim
(twist) angled' (Figure 2). They are given by equations for thatron of a vector by a given
angle in an appropriate base of unit vectors:

n=k'cosa' + (wxKk')sina' (18)
w=i"cosd +j'siny’

where the unit vectoi$ andj' are given by equations (13),is the angle of heel, i.e. the angle
of inclination of the initial waterplane relative the horizontal, anfl' is the trim angle measured
in the initial waterplane from the directich(whend' > 0, the twist is by aft); these are the Euler
angles, related to the ax@z' The angled’ results from longitudinal balancing of the shipeT
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knowledge of the unit vector defines the analytical angles, essential for ¢aticgy the geomet-
ric characteristics of the waterplane and shipls hu

The unit vectom is rotated in relation to the unit vecibby the angled = ¢ + §', equal to
the sum of the azimuth and the angle of trim (fwidence, both unit vectors in equation (18)
can be more simply expressed in the base of thersy3xyz

n =i'sina'siny —jsina'cos¥ + k'cos’ (19)
w=i'cosW¥ +jsiny¥

In view of the fact that the rotation of the unéctorw by an angley relative toi' can take
place in ahorizontal initial waterplanebefore heeling, van Santen calls this rotation the “tist
[21], without a clear indication that this is onietlee two Euler’'s angles, related to trim, meas-
ured in the initial waterplanafter heeling (Figure 5).

The following identities result from equations (E8)d (19):k' (h = cosa’, k' xn = wsind',
I'0v = cosW, I'xw = k'sin®. Wheny =0, W = &. For a trimmed ship in an upright position
equations (18) yield:

w = (cos¥, sing', 0) (20)
n = (sind'sina’, —cosy' sina’, cos')

For a ship at level keel, the angksandd' are replaced bg andd. The unit vecton be-
comes then identical with equation (54).

A change of orientation of the object in the honitad plane introduces a third Euler an-
gle — the azimutly. However, it follows from equations (19) that east for the axi®©z the
unit vectorn, describing the attitude of the ship relativehte horizontal, depends on two Euler’s
angles: the heel angté and twist (azimuthy = ¢ + 3'. For other reference axes things are
more complicated — the unit vectordepends on three Euler’'s angles, not on two. kmae
that in such cases the relationship between theEter's angles (heel and trim) and analytical
anglesh ande is affected additionally by the azimuth

4.2. Righting arm

The plane of rotation at which the ship is balanisedefined by a unit vectas; stationary in
space, normal or parallel to the line of nodeseddmg on the reference axis. When the line
of nodes is the trace of water in the midshipsyféd), the axis of rotation

e=exn (21)

wheree, = (0, cosh, sinp) is a unit vector of the trace of water in the ahighs. When the ship
has an initial trim, the unit vectey is replaced by the vectef, given by equation (9), and when
the azimuthyp # 0, the unit vector; is replaced bg;, given by equation (14). When the line of
nodes is the trace of water in the PS (Figuree4)g;, wheree, = (cos, 0, sirp) is a unit vector
of the trace of water in the PS, and when thedinedes is the trace of water in the wind impact
plane, the rotation axis= e/, wheree; is given by equation (16). When the line of nodahe
trace of water in the initial waterplame(Figure 5), the rotation axes= w, where the unit vector
w is given by equation (18), valid both for the shipevel keel, trimmed at an upright position,
or rotated by a certain azimugh

The three axes of rotation diverge, if trim vaiieshe course of inclinations. For example,
the axis of rotatiom, given by equation (21), related to the refereaasOx, is deviated from
the trace of water in the PS by an angle B — 90°, whereg is the angle between the traces of
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water in the midships and PS, given by equationHuither, the axis of rotatiom= k x n/sina,
related to the reference aXdy, is deviated from the trace of water in the PSabyangleys,
which can be found from the equatio®x e = sinysn. Hence, sig = —siné/sina. As can be
seen, the axes of rotation coincide with each otliken there is no trim.

The plane of rotation rotates around the axis tdtian e, whereas the waterplane, i.e. the
ship, rotates around an instantaneaws of floatatiorf, oblique relative to the axis of rotation.
The axis of floatatiori is understood as the edge of intersection of twtewplanes inclined
relative to one another at an infinitely small @adh the case of equi-volume waterplanes it
passes through the centre of floatatgn.e. the centre of gravity of the waterplane. HBheve
follows from the Pappus—Guldinus' theorem, knowship theory as the Euler’'s theorem on
equi-volume waterplanes. This theorem says nothlrogit orientation of the axis of floatation,
defined by a unit vectdr, discussed below. In mechanics, the axis of flaatas termed the
instantaneous axis of rotatioio find the axis of floatation it is necessanktmw moments of
inertia of the waterplane, which is not trivialtire case of a freely floating ship.

When the ship is being inclined the displacementaias constant, whereas the centre of
buoyancyB moves in the plane of rotation, normal to the afisotatione. Hence, it has to
satisfy the equation of the plane of rotatieft = 0, wherer = GB = (Xs — Xg, Y8 — VG, Z8 — Zg) IS
the radius vector of the centre of buoyancy retatovthe ship centre of gravity. When the centre
of buoyancy is in the plane of rotation it is sthdt the ship isongitudinally balanced The
qguantityelI = lc is a longitudinal component of the righting arehentical with a distance of
the centre of buoyancy from the plane of rotatibre(f > 0 it is forward of the plane of rota-
tion). For given volume displacement constand angle of rotation of the plane of rotatipa
const the longitudinal component of the aeft is a function of trim.

The righting moment is given by the equatMn= r xnD, whereD =V is the ship buoy-
ancy. VectoM is parallel to the rotation axes henceM = e[{r xn)D. The righting arnGZ =
M/D is therefore given by the equation:

GZ=elrxn) (22)

It is a function of the angle of rotationof the plane of rotation, depending on the refezends.

As can be seen, the basis for finding @& curve with free trim is the knowledge of co-
ordinates of the centre of buoyari8ythe rotation axig, dependent on the reference axis, and
the normah to the waterplane. In the case of the referene@x the result of calculations
is a curve of righting arms with the lowest valueal]ed theGZ-curve of minimum stability
introduced by Siemionov-TiaSzaiski [22].

4.3. Calculation of moments of inertia

A given ship hull is described in tl@xyzsystem, cut by an arbitrary plane. In ship stéaties
plane is the surface of the sea, whereas the sext®n itself is the waterplane. We want to
find the principal moments of inertia for the sardss-section. They can be foundirectly,
making use of moments of inertia for a projectiéthe cross-section (waterplane) on one of
the co-ordinate planes (BP or PS), discussed eraete [22], odirectly, by calculating geo-
metrical characteristics of the cross-section withhelp of traces of the waterplane in the frame
planes [6].

Moments of inertia will be found by the direct meth A typical cross-section of the hull,
i.e. the waterplane, is shown in Figure 9. Ekaxis coincides with the trace of water in the
PS, whereas thg-axis is normal to the unit vectonsande,. The origin of they-axis is at the
point of intersection of the-axis with the trace of water in the PS. The trasfdbe waterplane
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in the frame planes, i.e. widths of the framedimwaterplane are oblique relative to &haxis
(trace of water in the PS); some of them are shioviigure 9.

The angle between the unit vectors of the tracegusl to3. The&-axis divides a trace into
two segments of lengttessandb; which can be directly measured in the frame @ambe quan-
titiesa andb have the meaning of the co-ordinates of the efitlsectraces, measured along
a trace. These co-ordinates are positive, if theyt@the left of thé€-axis, and negative, if they
are to the right (Figure 9).

Figure 9. True view of the waterplane

Considering that the following holds between théoqie co-ordinatest( s) of pointP and its
rectangular co-ordinate§',(n)

&'=&-ssin(B-90°) =& + scosB
n =scos@ — 90°) = ssinp

it is easy to find an area elemeé®tin a waterplane strip of breadif as well as its static and
inertia moments in the categories of the obliquebnates g, s). These are:

OA = dédn = dédssinp

3M; = ndA = désdsin’p

oM, = §'0A = £d¢dssinp + d¢sdssinBcos’

3D = &'ndA = EdEsdssin?p + déS’dssir?Bcosd

3J; = n28A = dESdssin®B

8J, = &'0A = &°dedssinB + £dgsdssin2p + dgs'dscosBsing

Geometric characteristics for the whole strip carfidund by integrating the elementary quanti-
ties. The following is then obtained:

dA =[3A = sinpdg[ds = sinBdes|’, = sinB(b - a)de
dM; = [ M = sirfBdE[sds= sirfBdevss, = sirtBya(b? - ad)d&
dM, = [8M, = EdEsinB[ds+ dEsinBcoPB[sds=
= sinB(b - a)&dg + sinPv4(b® - a’)dE
dk =[5 = desin’g[s’ds. = sirpl4(b® - a)dE
dJ, =][8J, = &désinB[ds+ &EdEsin2p| sds+ d&f SdscosBsing =
= sinB(b - )2 + sirepya(b? — ad)Ed + cogBsinBl4(b° - a%)dE
dD =[8&D = &dgsinB[sds+ désinBcop|sds=
= sSinfByA(b? — a)&dg + sirfpcoPa(b® - a’)dg
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Integrating now along th&axis and considering that= £co9® (the&-axis is inclined with re-
spect to the-axis at the angle), the following is obtained for the geometric caeristics of
the waterplane:

A =[dA=sing[(b - a)d¢ = sing[(b - a)dx/coP
Me =[dM = sifB[¥4(b” - a)dE = sirf[¥4(b’ - a®)dx/cod
M, =[dM, = sing[ (b - a)EdE + Sin2B[v4(b? - a?)dE =
= sinB[ (b — a)xdx¥cos + sinB[¥(b” - a*)dx/coH
D =[dD = sirfB[v4(b? - adEdE + sirfBcop[(b® - a%)dE =,
= sifB[¥4(b” - a®)xdXcose + sirBcop[Vs(b°* - a%)dx/coP
J =[d = sirp[(b* - a%)de = sir’B[1(b* - a®)dx/coP
Jy =[dJ, = simg](b - a)&’dE + sirp[v4(b” - a%)gde +
+ cospsinB[ 4(b® - a%)dg =
= sinB|(b — a)X°dx/cos + sin2p[¥4(b* — a’)xdXcose +
+ cospsinB[4(b® - a’)dx/cod

Introducing notation:

l,=[(b-a)dx Jun = [ (b - @)xdx
I, = [v4(b? — a?)dx, Jio = [o(b? = @) xdx (23)
I = [1A(b° - &%) dx, Jx =[(b - a)xedx,

where, in generd}, = Jo,, finally we get the following expressions:

A = |;SinB/cov

Mg  =1,sirfB/cosd

M,  =JuSinB/cose + ¥l,sin2B/cosd (24)
D = Ji,Sir’B/cos6 + |;SirfBcoP/cod

Jg = |5sin’B/cosh

J = J,Sinp/cose + J;,sin PB/cosO + 1;,c0$Bsinp/coH

Co-ordinates of the centre of gravity of the walmp are as follows:
&c= Mn/A Nc = ME/A

whereas the central moments of inertia in the sy&tg shifted parallel to the waterplane centre
of gravity (centre of floatation) are given by therallel axes (Huygens—Steiner) theorem:

Jg' = Jg - Ar|C2
Jn' = Jn - AECZ
D'=D - Aécnc

The principal moments of inertia can be found kating the&¢'n' system by such an angle
that the product of inertia vanishes. This angigiven by the equation (see the appendix):

tan2y = -D'/a’ (25)

wherea' = ¥%(J; — J,) is a radius of the inertia interval. The momeoitanertia in the rotated
systemgn; are termed thprincipal momentsdenoted by, = J;, andJ, = J,,, whereas the axes
of the systeng;n, are called the principal axes of inertia. The @pal moments are given by
the equation:
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\]211 =S*r (26)

wheres = %(Js + Jy) is the centre of the inertia interval (centrela# Mohr’s circle), whereas
r = (@?+ D')" s the radius of the circle.

The correctness of received formulations can bekate on the example of a parallelo-
gram, shown in Figure 10. The tensor of inertithm systemg, n) is given by the equations:

Je = ulh®, Jy = %hP + whi’c + hic?, D =v4(lh)* + vlh%c.

Considering the co-ordinates of the centre of dya¥gi = %(l + c), nc = ¥h, the parallel axes
theorem yields the central moments:

‘]'E = 1/12Ih3, Iy: 1/12h|3 + 1/12h|C2, D= 1/12|h2C.
Hencea' = ¥%(Js - Jy,) = aln(h? - 17 - ¢?). Therefore,

tarey = -D'/a’ = —2hd/(h? - b - )

In further applications we need to know the central
C moments of inertia in the systeti', where the"-
axis is parallel to the axis of rotatienFor the refer-
ence axig, the axis of rotatioe = e, is parallel to the
h g-axis, the trace of the PS on the waterplane (Eigur
9). For the reference axis the axis of rotatior is
perpendicular to the trace of water on the frame
< | o planese,. Thef"-axis is therefore rotated with respect
Figure 10 to the&-axis by an angl@' = 3 - 90°. For the refer-
ence axifOz, normal to the initial waterplane, the
axis of rotatiore is inclined with respect to thiaxis at an angl@’, given by the equation:
cos3' = wle,, wherew is a unit vector of the trace of water in theiahitvaterplane. It can be
shown that the anglg > 0, if 8 > 6,. The central moments in the syst&hy', rotated by an
anglep' relative to the systeffif, can be found from transformation of moments 24ge the
appendix.

When the deck edge is immersed in waterétheis in Figure 9 (trace of PS in the waterplane),
can go beyond the contour of the waterplane fayeldreel angles. Theco-ordinates of both
ends of the trace of water at the frames havettieesame sign. This has no particular meaning
for calculations. It is worth knowing, however, thhe ¢-axis can be defined by any buttock
planey = const parallel to the PS, where the constant correspergl to the centre of projec-
tion of the trace of water in the midships sectooo the BP. Selection of tl§eaxis is mean-
ingless for the central moments of inertia, andckefor the principal values of these moments.

nA

A

~mY

4.4. Metacentric radii. Axis of floatation

The buoyancy centre of free-floating ship moves@la curve in the rotation plane, which rotates
as a disc around the axis of rotat®rand remains stationary in space (in the shipeayshe
said curve is spatial, oblique to the plane oftrotg. As the lines of action of buoyancy are
always vertical, they are normal to the waterpl&ignging the ship heel loly, the line of ac-
tion of buoyancy will rotate by the anglg in the rotation plane (relative to the ship), vezer
the waterplane will rotate by an angke, around the instantaneous axis of floatafiomhe re-
lationship between the differentials is as follows:
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do,cosx =dn (27)

wherey is the angle defining orientation of the floatatiaxis relative to the rotation axés
Equation (27) reflects the fact that small angl@gehthe features of vectors. Hence, the angle
dn is nothing other than a projection of the angleotdtion of the waterplandm, onto the axis
of rotatione. In general, the anglde; > da is equal to or greater than a change of the asfgle
inclination of the waterplanéa relative to the BP; the equality occurs when tkie af floa-
tationf is parallel to the axis of rotatian

The metacentric radiug = BM is understood as the radius of curvature of timeecaf cen-
tres of buoyancy in the rotation plane; it is gaigra function of the angle of rotationof the
rotation plane. In order to find an expressiontf@ metacentric radius, we have to resort to the
theorem on shifted masses, and apply it to wedgesed by rotation of the waterplane around
the axis of floatatiori. It has the following formyds=v|g,0.|, wheredsis the shift of the cen-
tre of buoyancy along the arc of the curve of @naf buoyancyy is the volume displacement
of the shipg,, g, are the centres of gravity of the emerged and irsetewedgey is the volume
of one wedge, andg,g,| is the static moment of the shifted wedge voluiires moment has
two components: transverse, equalktin,, and longitudinal, equal 1©:da,. Hence,

Vds= (Jf2+ Ds 2)ﬂ2d0(1

whereJs andD; are the central moments of inertia of the watepkaansverse and cross-product,
related to the axis of floatatioh Introducing the notationds = (J* + D;?)"?, the above
equation yieldsVds= Jsda;. On the other hand, the shift of centre of buoyaixlies in the
plane of rotation, therefore we can wrik&s= J:dn, wherelJ; has the meaning of the transverse
moOment of inertia of the waterplane of a freebafing ship. Hence/ds= Jsda; = Jrdn. Di-
viding this relationship by, we get:

ds=rsda; =rgdn

wherers = JJ/V, while rg = J;/V is the transverse metacentric radius. Considexquation
(27), the following is finally obtained for the naeentric radius:

I's = I/COSK (28)

As we can see, in contrast to the righting &#) the metacentric radiug directly depends on the
orientation of the floatation axigelative to the axis of rotatiam The knowledge of axis of floata-
tion accelerates the calculations. The metacemwiticisr; it iS
worth expressing in terms of the geometric chariatites of
e the waterplane in the syste&fim", which we will do later.

The centre of buoyancy moves in the rotation plargar-
allel to the waterplane (water-level). Therefohes vector of
displacement of the centre of buoyancy is equalrte
(nxe)ds whereds=rgdn.

The central moments of the waterplane relativééoeixis
of floatationf are given by the expressiods= s + a, where
s=Y%(J" +J,") is the centre of the inertia interval of the wa-

Figure 11. View from the  terplane 2 is the radius of the inertia interval of the wplane
top on the waterplane jn the systeni"n" after a rotation, while
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Ds = a'sin2 + D"cos X

: (29)
a = a'cos - D"sin2Zx

a' =v%(J" - Jy") is the radius of the inertia interval before tiota (in theg"n" system), whereas
D", J', J," are the product, transverse and longitudinal masehinertia of the waterplane
in the central syste@n', parallel to the axis of rotatiaa(Figure 11). The above expressions
result from the transformation of the moments @frila due to rotation of the central system
&'n' by an angle, given in the appendix.

Rotating the waterplane by an andta, the transverse component of the buoyancy centre
displacemenBB;, relative to the axis of floatation (Figure 11)pi®portional tak, whereas the
longitudinal componenB,B, is proportional toD;. We want the resultant displacement to be
normal to the direction of the heeling moment (afisotatione). To be so, the anglB in
Figure 11 has to be equal xpwhich results from the property of angles, whases are re-
spectively normal. Hence, the angle of inclinatadrihe axis of floatation relative to the axis
of rotation has to satisfy the equation:

tanx = Ds/J (30)

The anglex has the same sign as that of the waterplane proflirertia (in Figure 11 it is posi-
tive). It should be remembered that momebtandJ; are also dependent on the angle
which converts the above formulation to an equattubstituting; = s + a;, equation (30)
will take the form:

Di - (s+a)tang =0

The quantitied; anda;, given by equation (29), represent a parametuataon of the Mohr's
circle (Figure 12). Substituting them to the abegeation yields:

rsin(2y + 2x) - [s+rcos (& + 2x)]tany = 0 (31)

wherer = (& + D%)"2 is a radius of the Mohr’s circle, independenttaf brientation of a central
system, the phasey2= tari'(D"/a"), the angle 2= 2y, if a' > 0, otherwise 2= 2y, + 180°.
Equation (30), with the use of the quantiti@sanda’, is easier to solve, whereas equation
(31) is easier for geometrical interpretation (Fegi2);a" andy, are negative in this figure.

!
D

Figure 12. Mohr’s circle for the waterplane
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When cosg® and sing in equation (31) are expressed byyaih can be reduced to a simple
equation of the first degree relative tojal®" = (s - a")tany. Hence,

targ = D"/J," (32)

where|x| < sin(r/s), and|x| < |y, which is seen in Figure 12 and 13 (wlrk 0, y = y, + 90°).

It means that the axis of floatatibns between the axis of rotati@and the principal axis if

inertia of the waterplan&. TriangleJ;sD" in Figure 13 is an isosceles triangle, in whicé th
exterior angle equal?y. Thence, secadtD" is inclined relative to the abscissa axis at agiean

-Yo; the angley, determining the direction of the principal axisrertia of the waterplane, equals
Y = Yo + 90°.

D
D"

ol s

Figure 13. Principal direction and transverse mdmémwaterplane inertid;

Equation (32) has a simple physical interpretatidre directed angliea; has two components
in the systen"n": the axialdn and normatlt. Rotation of the waterplane around the axis
yields a longitudinal displacement of the centrewdyancy, proportional t"dn, which must
be compensated by trimmidgdt. HenceD"dn = J,"dt. Thereforegdt/dn = D"/J,", where the
ratio of differentialsdt/dn = tgy.

Strictly speaking, the static moment of the shift@ume displacement in the longitudinal
directionD"dn has to be compensated by the trimming moriwéhidt, whereVH, is the lon-
gitudinal coefficient of stiffness. HencBdn = VH_dt. Thus:dt/dn = D"/VH,, which yields
an improved equation (32), provided in publica{iéh

tgx = D"/VH, (33)

whereV is the volumetric displacement of the shijp,= R. —BZ s the longitudinal metacen-
tric height,R_ = J;"/V is the longitudinal metacentric radius, whB& = -r [ is the height of
the gravity centre above the centre of buoyanayufiél 3, 4, and 5). Hence, the coefficient of
stiffnessVH, = J," - V/BZ. In the case of conventional ships, the t&&V is negligibly small

in comparison to the longitudinal moment of inediathe waterpland,’, therefore equation
(33) is practically the same as equation (32)hindase of platforms and for large heel angles,
this term cannot be neglected.

Geometrical interpretation of solution (33), demblg ., is shown in Figure 14. The solu-
tion, given by equation (32), is denotedygyStraight lineAD" is inclined at the anghg. It is
clear thatx; > xo, which decreases the moment of inertia of the rphre J;, thereby de-
creases the metacentric radigslt can be seen also in Figure 14 that y.
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" BZ 'l

Figure 14. Mohr’s circle and stability charactddst

The knowledge of the angjedefines the direction of the axis of floatatiorThe unit vector
of this axis is as follows:

f = ecosy + (nxe)siny (34)

The transverse moment of inertia of the waterplirraefines in turn the metacentric radigs
= J;/V. Multiplying equation (28) by the volumetric diggemend/, and accounting for equa-
tion (30), the following is obtained:

Jr = JJ/cosy = (3% + Ds?)Y?/cosk = J[1+ (D /3 )3 Y4cosy
= J(1+tg’x)*/cosk = J/cos’y

Substitutingds = s + a;, wheres = %(J" + J,") is the centre of the inertia interval of the wate
plane, whilea is the radius of the inertia interval of the walane in the syste@'n" after a ro-
tation by an anglg, given by equation (29), the following is obtained

Jr = (s+ as)/lcos’y = (s+ a'cos X — D"sin)/cos’y =
gcosy +a'(2 —1/cogy) - 2D"tgy =
(s-a")(1+tg’x) + 2a" - 2D"tgy =
s+a'+ (s-a")tg’x - 2D"tgyx = J¢" + J,"tg°x — 2D"tgx

Accounting equation (32), we get the equation:

Jr=Jg' - Dtgy (35)

from which it follows that); < J;". It means that balancing the ship decreases éinsverse
moment of inertia of the waterpladg and also the metacentric radigswhich in turn causes
a reduction of the righting arm — a conclusion ¢stesit with the foregoing considerations that
balancing the ship decreases the stability. Theesspnl; = Js/cosx = Ji" — D"tgx has a simple
interpretation, shown in Figure 13.

The above equation can be obtained directly. Atimtaf the waterplane around the agis
yields a transverse shift of the centre of buoyapegportional taJ"dn. On the other hand,
balancing the ship decreases this shiftgt. The resultant shift, by definition, is propor-
tional toJ;dn. Hence:J;dn = J"dn — D"dt. Dividing it bydn it yields equation (35).

Equations (30), (32) and (33) were derived assutthateldr = 0, i.e. that the displacement
of the centre of buoyanay is strictly perpendicular to the axis of rotateriHowever, for a freely
floating ship this is not the case. Note that wihienship is heeled the trim has to be changed
to balance the ship, which changes orientatioh@fdtation axi® relative to the ship.
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Differentiating the equatior(® = 0 we get:eldr = -delf, i.e. in the co-ordinate system fixed
to the ship the displacement of the centre of booyas not strictly normal to the axis of rota-
tion. It should be intuitively obvious: since thentre of buoyancy has to remain all the time
in the plane of rotation, which changes its origotarelative to the inclining ship, the displace-
ment of the centre of buoyancy has to be obligue to

When the axis of floatatiohis known, it is easy to find new analytical angpeand6, de-
scribing orientation of the ship relative to thetevaat the new angle of heel. Namely, rotating
the waterplane by an anghe;, the unit vecton rotates around the axis of floatation by the
angleAa;. Hence, the new unit vector is as follows:

n; = ncosAa; + (f xn)sinAa, (36)

Knowing new unit vecton (= n,), the new analytical angles, corresponding tori&e unit
vector can be easily obtained from equation (3mblg, tard = —n,/n,, whereas taf = —-ny/n,.
The knowledge of new angles of waterplane incloratargely speeds up the process of find-
ing the correct location of the centre of buoyaaicg new angle of he¢l| ¢ or a, depending on
the line of nodes. The equation of new waterpladriest iteration is as follows:

(X = Xe) = My(Y = V&) —N(2-2) =0 (37)

wherex., y:, Z- are co-ordinates of the previous centre of floaeff, whereasri, ny, n;) = n,

are components of the new unit veatolEquation (37) is more convenient than equation (1
as with an increase of heel taandT, grow indefinitely. Equation (1) is essential tarsthe
calculations. Knowing equation of the waterplanes ihecessary to check by iterations, if the
ship displacemen¥ = constis conserved, and if the ship is longitudinallyaoeed, i.e. if the
equationel® = 0 is satisfied. If not, then the waterplane showddshifted in the normal direc-
tion by a distancan = -AV/Ay, and the trim angl®, 6 or 8, depending on the line of nodes,
should be corrected accordingly. If the centre wdyancy is in front of the plane of rotation
(le > 0), the trim angle should be somewhat decreasedythying the waterplane around the
axisn" (Figure 11) in positive direction by an angfe= I./H,, whereH, is the longitudinal
metacentric height. This reasoning is fully corrimatthe reference axi®x, where the axis
n" is parallel to the trace of water in verticahrfre sections (Figure 3). In the case of other
reference axes, the ship has to be rotated arounmdnaal to the PS (Figure 4) or to the ini-
tial waterplane (Figure 5) to avoid a change offteel angle. Depending on the line of nodes,
the vertical change of the trim angle is as follows

—-AT1 = A®© = ABCOosp = -Ad Sina (38)

which results from the vector properties of smathtions, i.e., a projection of the directed angle
of trim on the horizontal plane (Figure 15). Sulosing At = l¢/H,, the following is obtained:

P<

Figure 15. Positive change of oblique trim
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—le=H_ AO = (H_.cOSp)AB = —(H_sina)AS

The multipliers of the trim changes are the coédfits of stiffness with respect to trim, i.e.,
the longitudinal metacentric heights. Except thdiwal trim, in the case of oblique trims the
metacentric heights are incomplete, as they negfheceffect of the vertical change of trim,
which turns the ship in the horizontal plane.

Calculations of th&Z-curve can be significantly accelerated, if they lbased on the Krytov—
Dargnies' method, modified for a freely floatingpshutilising the properties of equi-volume
waterplanes for such a ship, unknown in literatlre finite interval of the angle of rotatiam
equi-volume waterplanes roll over the surface oéiain cone, the parameters of which can be
predicted in advance [6]. The rolling waterplanestangent to the cone along the instantaneous
axis of floatatiorf.

4.5. Mechanism of equi-volume inclinations

An infinitesimal rotation of the waterplane arouthe axis of floatatiorf can be regarded as
resulting from two rotations: ship's rotation byamgledn around the axig§", parallel to the
axis of rotatiore, and ship's rotation by angle around the axig", normal to the axis of rota-
tion e (Figure 11). Hence, the directed anfgle, has two components in the syst&m’, equal
to the two said elementary rotatiorfsto; = (dn, dr).

The directed angléda; is inclined at an angle to the rotation axie (Figure 11). Positive
anglex corresponds tpositivenormal component aft, whereas the change of trimnegative
(by stern), therefore the normal component haettaken with an opposite sign. Projection of
da; on the rotation axis yields equation (27). Rergrto the relationships inherent for rectangu-
lar triangles, normal componentaf can be written in two ways:

dt = da;Ssiny = dn tany (39)

The above equation indicates that: 1° the moreediftl the floatation axis from the rotation
axis, the greater changes of ship trim during mations, which is intuitive; 2° whepn= 0,
i.e. whene = f, the ship trim does not change, as for a ship Wigd trim; 3° from equation
(38) it follows that forp = 90° (the PS is then horizontady = 0. We will see later that it is im-
possible for a free floating ship to achieve thglap = 90°.

In the case of the reference ayeandz, the rotation of the reference planes around nbrma
vectors, associated with trimming, equalgdé or —-kdd has also a vertical componed,
which equals the rotation (the change of orientgtaf the ship in the sea surface. In the case
of PS, it equalsl®sing, and in the case of BP, it equalddcosa (Figure 15); note that in the
said figures the heel angle is negative. Hence,

dy = -dBsing=-dd cosn (40)

In both cases, the vertical component of rotatibthe plane of rotation is directed down-
wards, which means that rotation of the ship inhbé&zontal is clockwise. If this rotation
was neglected, the trim would change the azimuth.

Considering equations (38) and (39) the differémtiacan be expressed in terms of an in-
crease of the heel anglg. Namely, dy = drttang = dt cota, wheredt = dntany is a rotation of
the ship in the horizontal. The angles of rotatiohthe PS or the initial waterplane around the
trace of water have no vertical components, asdahegirected horizontally (Figure 2).

A different situation occurs in the case of therefice axix: a change of the trim angle, as
a vector, is directed horizontally, therefore it Im@ vertical component (Figure 3). However, the
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angle of rotation of the midships section arouschibrmal-id$ has a horizontal component:
-dp cos®, and vertical-d$ sin®. Rotations of the waterplane relative to the siaipe the oppo-
site sign: ¢ coso, do sin®). The horizontal component is the angle of rotatibthe waterplane
relative to the ship. Hencen = d¢ cosd. The vertical componemhp = dp Sin@ = dntano is
a change of orientation of the rotation axiglative to the ship. When in an upright positiba
ship is trimmed, the anglésand® are replaced by i @, and the angles andd by a' ands'.

It is worth emphasising that the rotation of thgsh the horizontal by an angtiy, induced
by trimming (balancing) the ship, has dioect effect on calculating th&Z-curve. In particular,
it has no effect on the orientation of the axiglo&tationf in the ship system. Hence, if for
a new waterplane the anglechanges bylx the new floatation axis will rotate relative the
previous one by an angt, as rotation of the ship in the horizontal plamesi not change
the waterplane. When the angle > 0 is positive, the new floatation axisshifts towards the
heel, i.e. it departs from the rotation agis

Equi-volume waterplanes roll over a non-circulaneavhose axis is inclined relative to the
waterplanes by an angledetermined by the following expression:esirdy/da;. The derivation
of this equation is elementary. When a cone rals @ plane with no slip, the base of the cone
moves along an arc of length=ra. Hencey/a = r/l = sire, wherey is the angle of rotation of
the cone in the plane,is the angle of rotation of the cone around its @xis of symmetry,
is the radius of the base, anid the length of the generatrix. In kinematicg faid cone, over
which equi-volume waterplanes roll over, is an egknof a ruledixed axodewhereas rolling
waterplanes — of moving axode

When the anglely > 0 is positive the cone is located above the wkiegs, if not — below.
The apex of the cone is located at a distance thengeneratrix from the centre of floatation
F, given by the equatioh= -dn'-/dx, wheredn’ is the displacement of the centre of floata-
tion normal to the axis floatation (whér» O, the apex is located in the direction of the how
Taking into account thain'- = r=da; one obtains:

| = —reda,/dx = -re/sine

wherer: = dX/dV is a differential metacentric radius (radius afvature of the curve of centres
of floatation). This formulation shows that theitedof the cone base at the level of the centre
of floatation is equal to the differential metacentadius.

EXAMPLE. It can be shown that the angle between two wiatees is given by the equation:

cosy' = cosecosy + sinfe
Commonly, the angle= 0 is small, ther' = a.

If ship heel is increased lal, the displacement of the centre of buoyancy, nbtonthe plane
of rotation, is proportional tB"dn, whereD" is the product of inertia of the waterplane inghg'
system (Figure 11). The said displacement musbbgensated by trimd,'dt. Equating them
to each other one gats = (D"/J,") dn. Hencedt/dn = D"/J,". Taking into account equation (39),
the above yields equation (32). A more exact smiutian be obtained by using the metacentric
formulation fordt = (D"/VH,) dn, whereH, = GM, = BM_ — BZ is the longitudinal metacentric
height. As tal = dt/dn, the above yields equation (33), recalled befataaut derivation.

The righting arm of the ship is given by equati@g)( In order to make use of it, for given
heel angley = constand given volume displacemeévit= constwe have to know the trim at
which the ship is balanced, i.elf = 0. Usually, we find it by an iterative method. Tipi©cess
can be accelerated, if the change of the longiaddiomponent of the righting aratle = d(e(t)
=delf + eldr, induced by trim is known.
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The change of the axis of rotatide in the ship hull system induced by trimming can be
easily worked out with the help of Figure 3, Figdreand Figure 5. In the first case the change
results from vertical rotation of the unit vecwby an anglalo, in the second — by an angle
do in the PS, and in the third case — by an adglm the initial waterplane. Hence,

de=ndo
de=(exj)de
de=-(exk)dd

(41)

Thus,
del =rhdo = -BZdd
del =rexj)do =r &, =r,do = -(BZcosp - Ising)dd
del® = -r exk)dd =r @k xe)dd = (BZsina + |cosn)dd

whereBZ is a vertical distance between the ship centrgravity and centre of buoyancy
(Figure 3),e; = ex| is the unit vector of th®Z axis, fixed to the plane of rotation; the saidsaxi
is the edge of intersection between the PS andontplane (Figure 4);; is a projection on
the axisOZ of the radius vectar of the centre of buoyancy relative to the shiptreeaf gravity,
andr [{kxe) is a projection of on the edge of intersection between the planetation and
the initial waterplane. The second relation resiutism a projection of the segmeBEZ on the
OZ-axis, deviated from the vertical by the angl@=igure 4), and the third one — from a projec-
tion of BZ on the axi€Dz, deviated from the vertical by the angl€Figure 5).

In the case of the reference a&ix, the second contribution to the chaligs given by the
relation:eldr = R.dO©, whereR_ is the longitudinal metacentric radius, which dalks from the
preceding considerations. For other reference déixesertical change of the trim angle is given
by equation (38).

In addition, we have to account for the effectathtion of the ship in the horizontal on the
displacement of the centre of buoyancy relativehto(stationary) plane of rotation. It equals
-Idy, which directly results from Figure 4 and Figurenheredy is the trim induced rotation
of the ship in the horizontal, given by equatiof)(4andl = GZ is the righting arm. Whedy
< 0 is negative, the rotation is clockwise, while theplacement of the centre of buoyancy is
positive, i.e. in bow direction. For the refereasés x, dy = 0, since the vertical change of trim
does not cause any rotation in the sea surfacer@-R); the said rotation occurs only during
oblique trimming (see Figure 4 and Figure 5).

Hence, combining the said contributions, dependimghe reference axis the following is
obtained for change of the trimming adfg:

dle = (R.-B2do
dle = [R.cosp — (BZcosp - Ising) + Ising| d6
dle = [-R.sina + (HFsina + lcosn) + [cosa] d9

After simplifications, we get finally:

dle = HLd@
dle = (H.cosp + 2Ising)de6 (42)
dlg = (H.sina — 2lcosn) (d9)

In the third case, we have to pay attention tostge ofa. When the heel is to portside ¥ 0),
a positive increase of the twist ange means trimming by aft, i.e. the chardie< 0 is nega-
tive. Hencedd has to be taken with the opposite sign. When #ed is to starboardx(< 0),
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a positive increase of the twist angfe produces the changi, consistent with the sign ab.
In other words, the expression fdrs changes the sign when< 0.

These equations allow for a quick finding of theiigrium trim. The expressions in the
parentheses represent a derivative of the longididiomponent of the righting arrelative
to the respective trim angle, that is, the longitatimetacentric height for a given reference
axisH e Hig i His, understood as the stiffness relative to a regmetrim angle. The first one
is the classic longitudinal metacentric heigh = H, for vertical trims. In the case of oblique
trims, the longitudinal metacentric height depeadditionally on the righting arine GZ

In the course of heeling the longitudinal metagehieight varies. When it becomes negative,
it means the lack of longitudinal balangeso factg the lack of opportunity for determining the
righting arm. This phenomenon is termedaing stability This phenomenon does not occur
when doing calculations with fixed trim — tl@&-curve is defined at each heel angle.

In an upright positioH o = H s = H,, andHs = -2l,. Whenl, =0, wherel, is the righting
arm in an upright position, the longitudinal metatcee height is an even function of the heel
angle. Wher, # 0, i.e., when an initial heel occur, in the caséhefreference axi®z' the GZ-
curve is indefinite in some one-sided neighborhaiazkro. For two other reference axes,@x
curve is continuous around zero. When 90°, H, s — H, tends to the longitudinal metacen-
tric height, as for the reference axdg, whereadd ¢ tends to negative values. It means that in
some vicinity of the angle = 90° the GZ-curve related to the reference a®igis indefinite.

The expression fad, s allows for the estimation of the external endhaf interval, in which
the GZ-curve for the axi©z'is indefinite. From equation (42) the followingsudts:

tana = 2I/H, (43)

The above angle can be expressed in terms of thal ineela,. Assuming that, = -l¢/hg,
wherehy is the initial metacentric height, we get=-2a,hy/H.. As we can see, the length of
the interval with faded stability is proportional the angle of initial heel, located on the other
side of zero, starting exactly at zero. For coneeratl ships the said interval is imperceptible.
However, it is characteristic for semisubmersibéfprms, particularly for jack-up rigs, where
the longitudinal metacentric height is relativeigal and the righting arms relatively large.
For inclinations in the direction of the initial életheGZ-curve is definite at each point.

The anglex, given by equation (33), describing orientatiorthed axis of floatatior rela-
tive to the axis of rotatiop, was obtained without accounting of the rotatibthe ship in the
horizontal plane. The said angle affects the trarseymetacentric radius= J/V through the
transverse moment of inertia of the waterpldpegiven by equation (35). The improvement
of the relation for the angleis simple. The rotation of the ship by an ardyeyields not only
the static moment of shifting the displacementhimlbngitudinal direction, equal @'dn, but
yields also the rotation in the horizontal by amglardy = d$sin®, directed upwards, if the
ship is trimmed by bow. The said rotation movesdéetre of buoyancy away from the plane
of rotation towards the aft dgy. The resultant change of the static moment hdmetoom-
pensated by a trimming momevit,_dt. Hence:

D"dn — Vidy = VH, dr,
D" —VIdy/dn = VH, dt/dn.

Accounting thatly/dn = tg®, anddt/dn = tgy, the following is obtained:

tgx = (D" - VItge)/VH, (44)
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The above equation is valid for the reference &«isWhen the ship has an initial trim, the
angleo is replaced by If tan® is negligible, the above reduces to equation (33).

In the case of the two remaining reference axes.etbmentary rotation of the shilp,
equal todg or da, there is no a vertical component. Therefore,stlatic moment of shifting
the displacement in the longitudinal directibhdn has to compensated by trimminy di,
wheredl is given by equation (42). Hend@’dn has to be equal tovH ,d6 or VH sdd. Ac-
counting for equations (38), the following is oliedl:

tgx = cospD" /VH,e (45)
tgx = —sinaD"/VH.

When the ship has an initial trim, the angle a@aced byr'.

4.6. Properties of theGZ-curve

Knowing metacentric radii for a freely floating phone can easily find the remaining proper-
ties of theGZ-curve. They are analogous to those known fronclassic ship theory. Like so,
the metacentric height= ZM is equal to:

h=%,1=rs-BZ (46)

whererg = BM is the metacentric radius, given by equation (B®)z= -r [h is the height of
ship centre of gravity above the centre of buoyafregure 3, 4 and 5), = GB is the radius-
vector of ship centre of buoyancy relative to gatce of gravity, and is a unit vector normal
to the waterplane, as given by equation (3), @radttive ones. Equation (46) can be immedi-
ately obtained by considering the line of actiobobyancy in the plane of rotation (Figure 16)
for heel angle increased by, where the angle of rotation= ¢ or a, depending on the line of
nodes (the syste@,YZis fixed to the plane of rotation, whose origiratsan initial position
of the centre of buoyand). The metacentric height can be also obtainedffgrentiating the
righting arml = GZ, given by equation (22), with respect
to heel angle (angle of rotation) in the ship-fixeder-
ence system. This derivative is given by:

z i

GZ'=€lrxn) + e[{r'xn) + el{rxn') =rg+rm

identical with equation (46), where the sign ' staifior

differentiating respective to the heel angldt can be dem-
onstrated that the first terg\[{r xn) vanishes (it is suffi-
cient to observe that the three vectors are coplaealie

in the plane of rotation), the second one is theaosatric

n 8 radiusrg = BM, and the third one equaish.

Work done by the righting momeM is given by the
s equation:

B

v ! i L =] Mdn=DJ] Idn =Dl

Figure 16. Rotation plane lg = .[2 ldn (47)

whereD is buoyancy of the ship, amglis thedynamic armthe same as the first integral curve
of the GZ-curve, i.e. the area under t-curve. The dynamic arm is proportional to work
done by the righting moment. Considering rotatiérihe plane of rotation by an angi
(Figure 3-5, Figure 16), one can easily demonsttaethe differentialGZdy = d(B2) is an
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increment of the segmeBZ due to the vertical shift of poird, as the buoyancy centi
moves horizontally, i.e. parallel to the waterplaHence, the known formulation for the dy-
namic arm is obtained:

lsg=BZ-a (48)

wherea = B,G is the height of the ship gravity cen@eover buoyancy centre in an upright posi-
tion (i.e. forn = 0). The said equation has a simple physical int¢éaiosn — the dynamic arm
is equal to the vertical increment of the distabheeveen the centre of gravity and centre of
buoyancy. It can be useful in checking accuracgal€ulation of theGZ-curve. The initial
heel has no effect on this equation.

It is worth mentioning that th&Z-curve with free trim complies with the theoremnaihi-
mum potential energy, i.e. heeling of the ship @rmstbod as rotation of the plane of rotation)
by a given angle requires the least work. Thisisnaportant feature of th&Z-curve. The de-
flection of the ship from its longitudinal equilibm is not possible without applying a
trimming moment and doing additional work that gases its potential energy, which proves
the above theory. Thus, ti&Z-curve with free trim is at most equal to or smatlen that of
a ship with fixed trim, clearly illustrated in Figul. Otherwise, it means that the calculation
algorithm is flawed.

Considering the above, the following holds for dlyeamic arms of a freely floating ship and
with fixed trim:

la=lgc— [, (eT)d®

whereo is the trim angle for a given angle of rotatipof the plane of rotation, measured at
a vertical plane. If one assumes that the longitaldnetacentric heigh, is constant in the
course of trimming, then equation (42) yields {fedt) = H, ©. Hence,lq = l4c - ¥2H, ©% As can
be seen the sign of the trim has no meaning. @ffeating this equation with respect to the
angle of rotatiom of the plane of rotation, we get | — %(H_©%)'. Hence,

| =1, - (%H,' ©? + H 00) (49)

From this equation two important conclusions camtaevn. Firstly, the greater the change of
trim after balancing the ship, the lesser is@xecurve with free trim. Secondly, tf@Z-curves
of yet smaller arms would have to have yet larger thanges, which is impossible due to the
lack of other equilibrium trim than that for a flgdoating ship. By changing the trim, the cen-
tre of buoyancy permanently moves away from thaelaf rotation. Hence, th@Z-curves with
free trim are identical with th&Z-curves of minimum stability. In other words, tloaditudinal
balance of the ship provides at the same timenihenumpotential energy at a given heel angle.
When the ship at the initial position has an ihiien ©, the angle of trim in equation (49)
should be understood as change of t@m ©,. It is worth remembering that a fixed trién
measured in the PS, does not mean that trim atti@galgolane® = const Equation (4) implies
that wherd = const the angle® decreases to zero, wherends t®0°. This means that with an
increase of the heel angle the difference betwbkeGZ-curves at level keel and with fixed
trim as in the initial position, should vanish, popted also by numerical calculations.

4.7. Cross-curves of stability

The lever of hull form, i.e. the arm of buoyancyc®relative to the initial location of centre of
buoyancy, shown in Figure 16, is given as follows:
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lg = GZ+ asinn (50)

For a freely floating ship, which changes its tdoring heeling, hull form armdependon the
height of centre of gravity over the BP. In theecabtrim, while changin¢lG-value the centre of
gravity does not remain in the original plane dgétion, which causes a change of ship trim, and
entails in turn a change of hull form arm, thus mgkt dependent upon th€G-value. Hence,
strictly speaking, the idea of cross curves ofistaladoes not apply to a freely floating ship.

Note that thez-axis does not lie in the rotation plane, whiclnidined to it at an anglg,
given by the equation: 9F elk = e,. For the reference axis the rotation axis is given by
equation (21). Hence, ir= cosptanfcosa = tan@cosu. For the reference axys it is easy to
obtain that the deviatiob= 6, and for the reference ax@z', normal to the initial waterplane,
0=0, i.e. the axi©z'lies in the rotation plane.

Hence, shifting the centre of gravity along #rexis by a quantityiz; causes poinG to shift
before the rotation plane by a distamge Az;sind. As a result the ship becomes unbalanced
and must trim in the vertical plane by an amife= |o/H,, whereH, is the longitudinal meta-
centric height at given heel angje The ship is balanced by changing its trim angigout
changing its heel angle. In this case, the relatignbetween trim angles is such, as in equation
(38). This defines the trim correction, dependingtle reference axis. From Figure 16 it can
be established that the new righting lever is etual

I, =1 - Azscosdsinn + (D"/V) AG (51)

whereD" is the product of inertia of the waterplaneha systeng'n" (Figure 11). For common
trims the function co$= 1 can be omitted. Two first terms in the above equaire the same
as for a ship with fixed trim. The last terid"(V) A©®, denoted further down yl, accounts for
the effect of trim change on tl&&Z-curve with free trim. Considering tha® = |/H., and re-

sorting to equation (33), one obtains:

Al = Azssindtany (52)

The above correction vanishes for the reference @xj asé = 0. For other cases additional
information is needed on the run of the an@esdy as function of heel anglg for calcula-
tion of the correctioal. The said angles, however, depend on the posifieentre of gravity
of the ship, which makes the idea of cross-curyesability invalid.

A way out of the situation is calculation of crassves of stability in the form of th&z-
curve for a typical location of the ship's centfe@avity. The correctioal is then small, and
can be frequently neglected. For modest changdiseoheight of centre of gravity the ratio
Al/Azg = sindtany is practically independent of the position of tentre of gravity. For cal-
culating the correctionl it is sufficient to know the run of the said ratie a function of heel
anglen. Equation (51) for a ne@Z-curve takes then the form:

[, =1 - (sinn - sindtany)Azs (53)

Cross-curves of stability are usually presentethenform of a graphl:=1(V, n =cons}. In
a similar manner a graph of the raaildAz; = sindtany should be presented, as a functioWv of
with heel angley as a parameter.
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5. KINEMATICS OF A FREELY FLOATING SHIP

The attitude (orientation) of the waterplane refatio the ship is described by the analytical
angles and®. All other angles between various planes and agasbe expressed using the

two angles, where these relatiais not depenadn the reference axis. The choice of the ref-
erence axis affects, however, orientation of the akfloatationf on the waterplane, and the

ship itself relative to the plane of rotation, imieh it is balanced (large circle in Figure 3,

Figure 4, Figure 5), and hence — the righting léweGZ, given by equation (22).

For example, equation (3) for components of thé wattorn, normal to the waterplane, is
valid regardless of the choice of the reference.driany case, it can be expressed directly with
the help of the Euler’'s angles, appropriate fovamgyreference axis. When the line of nodes is
the trace of water in the BP (which applies, whiesineupright position the ship is at level keel),
the analytical angles in equation (3) have to Ipdaeed by the Euler's angl@sanda. Substi-
tuting for taré = -sinStana, and for tap = cosdtana, the following is obtained:

n = (sindsina, —cosy sina, cosx) (54)

The above is identical with equation (20). Wheanrupright position the ship is trimmed, the an-
glesa andd are replaced by' ands'. The line of nodes is then the trace of watetheninitial
waterplane, i.e. the edge of intersection betwkenritial and actual waterplanes.

When the line of nodes is the trace of water inRI$e the Euler's angles are the angles
andg. Taking into account cas= cocosp and equation (5) on tarthe following is obtained
from equation (3):

n = (-sinBcosyp, —sing, coOPHCoSy) (55)

Similarly, when the line of nodes is the trace aftev in the midships section, the unit vector
can be expressed in terms of the Euler’s anglasdo, as follows:

n = (-sin®, —cosBsing, COPCOSYH) (56)

When in an upright position the ship is timmea, #mgles) ando are replaced by’ ando'.

In the case of the reference akig, commonly used for calculating tBZ-curves with free
trim, e.g. in the NAPA software, PROTEUS, STATAW|INSEA, and in many other computer
programs, the plane of rotation is a vertical frata¢ion, parallel to the trace of water in thenfes
(Figure 3); in the case of the aXiy, it is normal to the trace of water in the PS (iFeg4), and
in the case of the ax{3z, it is normal to the trace of water in the initiedterplane (Figure 5).

In other words, in the first case the plane oftiotais parallel to the line of nodes, while in the
two remaining cases it rormalto the line of nodes.

It is worth emphasising that in space there is onlgrotation plane (large circle in the said
figures). However, the ship sets differently wiélspect to it depending on the way of balancing.
In the case of the reference afis, longitudinal balance of the ship is achieved éxigal trim-
ming around the trace of water in the vertical fegofanes (Figure 3), in the case of the &ys
—around a normal to the PS (Figure 4), i.e. ardheg-axis, and in the case of the a€ig'—
around a normal to the initial waterplane (FigureHence, the ship after balancing has various
orientations relative to the plane of rotation,dquaing different righting arms, dependent on the
way the ship is balanced (the choice of the ref@eaxis). Nonetheless, the direction of the
righting moment in space is the same. The varioesntations of the planes of rotation relative
to the trace of water in the PS (the &jisre illustrated in Figure 17. Deviations of thpkmnes
from a plane normal to the axjsare described by the anglgsy. andys. Frequentlyy, = 0, while
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for the GZ-curve of minimum stability, =y, = y;, which means a common plane of rotation,
independent of the reference axis.

Figure 17. Planes of rotation on the waterplane

The effect of the plane of rotation (reference aarstheGZ-curve can be clearly seen in equa-
tion (22), where the righting levémdepends om, n ande. For the same analytical angkes
ande, the vector xn is the same but the different rotation planes rdifferente, which in
turn gives different righting levets Nonetheless, the areas un@-curves for various refer-
ence axes have to be the same.

The proof is simple. If the large circles in Figite4 and 5 is rotated so that the righting
arm GZ = 0 vanishes, then the maximum work is performed, tlee ship reaches maxi-
mum of potential energy. Since, only one maximurstex it has to be independent of the
choice of the reference axis. That is to say, thasaundeGZ-curves are conserved. Hence, if
ranges of th&Z-curves for various reference axes are differenit, Bappens in the case of rigs,
then in the descending part of these curves theg lmintersect with each other. However,
the differences between them are modest.

In order to get the same righting levers for vasiogference axes but for the same analyti-
cal anglesh ande, the rotation axes would have to be the same, which is possible vithen
azimuth is accounted for. In addition, the dynaarm |y would be the same and the angles of
rotation of the plane of rotation, which followsifn equation (47) for work done by the right-
ing moment.

The choice of the reference axis also affects tlem@tion of the axis of floatatioi around
which the instantaneous rotation of the waterptakes place, which in turn defines the ship’s
kinematics. This axis is inclined with respecthe &xis of rotatioe at the anglg, given by equa-
tion (32).

In the case of the reference a®ig, commonly used for calculations, the angle oftrotehas
no simple geometrical interpretation. This comesnfthe fact that the reference axis@ nor-
mal to the plane of rotation (vertical frame). Trgle of rotation in such a case is given by the
equation:dn = dpcoso, i.e.n = [cosDdd, from which it follows that) < ¢, and that foh = 90°,
the angle of rotation < 90°. For ships, the anglesand¢ are practically identical, since the trim
angleso are less thatr. In the case of platforms, the differences betwkeniwo angles can be
large, as trims can be large. The differendiplcan be obtained also from equation (27), which
implies that the elementary rotatidn > 0. This in turn means that the trim an@l& 90° can-
not reach 90°. In other words, in the course ofihgéhe rig cannot “rear”.

An interesting case of a ship inclined @ is shown in Figure 18, where the differences
between various reference axes can be distinatly.da the case of the reference aisthe
PS is horizontal at the angpe= 90°, while the rotation plane passes through thesbipalvity
centre and buoyancy centre, which means that tpasslongitudinally balanced. As the plane is
stationary in space the entire figure should beézbatally rotated around poi@ (in this case
to the left) by an angle of deviation from thaxis so that the plane of rotation is verticalha
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figure. The righting arm is negative and equalh® horizontal distance between poiGtsnd
B. However, this attitude of the ship is very unhks be achieved, due to the lack of longitu-
dinal balance, which results from equation (42).
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Figure 18. Top view of the ship heeled by the aggte0°

For the axi®Ox andOzthe rotation plane in Figure 18 passes throught®in parallel to the
axisz. As the centre of buoyancy is not located in tlaag, the ship would trim (in this case by
bow) so as to be located in the plane of rotafldve heel angle would still be equaldte- a =
90°. The righting arm would be equal to the horizowligtance between the centre of gravity
and the translated centre of buoyancy. For the@xishe angle of rotation < 90° would be
less than the right angle but the difference wd@dmperceptible, even for larger trims. Hence,
the twoGZ-curves converge at the heel angle@f.

When the line of nodes is the trace of water inrthéships, the axis of rotation is given
by equation (21). Substituting equation (56)rpwe get a unit vector:

e = (Co, —-sinBsing, SiNOCcosh) (57)

normal to the line of nodes (unit vecwrin Figure 9), parallel to the ax§$ after rotation of
the systent'n' (not shown in Figure 17) by an angle= 3 — 90°. The axis" is then normal
to the line of nodes,, whereas the axig" is parallel. It is easy to check tha/dO = n, as
in equations (41), where the unit vectois given by equation (56).

When the line of nodes is the trace of water inRBe the axis of rotatiom= ex coincides
with the trace of water in the PS, i.es (cos, 0, sir). It is easy to check thae/oe = exj,
as in equations (41).

When the line of nodes is the trace of water iniiite&al waterplane, the axis of rotatie
w coincides with the said trace of water, wharek xn, which yields

e=(cos3, sing, 0) (58)

The above is identical with equation (20). Whensh# is trimmed in an upright position, the
anglesa and?d are replaced by' andd'. When the waterplane is symmetric (intact) this a
coincides with the trace of PS on the initial wplane, ther' = 0. It can be easily checked
that’/,se = kxe, as in equations (41).

In the case of semisubmersible platforms, in viéwmall values of the ratib/B < 2, the
regulations require that the stability of platforresanalysed for various orientations relative to
the wind direction, i.e. at various orientationgled wind impact plane relative to the PS, vary-
ing from 0° to 360°. It is not so much because of B&-curve but because of the wind heeling
moment, strongly dependent on platform orientatelative to the wind (the windage area
dramatically changes in the course of heeling)c@ating the wind heeling moment is not a
problem, except for its cost. There are, howeveblems with interpretation of teZ-curve
with free trim.
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Equations (18) and (19) imply that transvdraed longitudinale components of the righting
arm are functions of the angle of heednd angle of twis¥ = ¢ + §'. The twist¥ = W(a') is
a function of the angle of heel, which results frbra longitudinal equilibrium, i.e. from the
solution of the equatiok(a’, W) = 0.
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Figure 19. Run of transverse and longitudinal comegmds of the righting arin
and dynamic arrty for rig Il versus twist angl& for a given heel angle

A graph of the function of two variablés=l¢(a', W) is a surface. Curves, which result from the
intersection of this surface with the pldpe 0 are a solution for the functiod = W(a'). Hence,

for a given heel angle = constthere can only be a discrete number of twist aiglat which

a platform is in longitudinal balance. These anghas be easily found with the help of a gréph
=lg(a’, W) for a given heel angl&, as in Figure 19, carried out for platform II, @stigated in
chapter 7. As can be seen, for a given heel aiglel1° there are four twist anglé, corre-
sponding alternately to minimum and maximum stapilThe first angle corresponds to the
absolute minimum of stability, while the last oteethe absolute maximum. In any case, the first
and third root is symmetric relative to the ang@e, which can be proved strictly. These four
equilibrium angles indicate that for a freely flo&ft object only two meaningful orientations
of the rotation axi® are possible, i.e. when it is parallel in an ulprigosition to one or the
other principal axis of inertia of the initial wapéane. The first orientation is the worst, i.e.
it yields theGZ-curve of the lowest arms. When the waterplanesysranetric, the ship has
to be inclined towards the initial heel. In the@at orientation there are unstable inclinations
of maximum potential energy. At other orientatidhere are heel intervals, at which the unit
cannot be longitudinally balanced. TG&-curie is then indefinite.

Meanwhile, the regulations require the stabilitplaitforms to be analysed at various orienta-
tions relative to the wind direction, describedtbg azimuthp 0 (0°, 360°), varying at every
5°. The azimuth is measured relative to the axiotHtione, perpendicular to the wind direc-
tion. Except for the four said orientations, pe= 0°, 90°, 180° and270°, in the remaining cases,
if the ship is to be longitudinally balanced tGB&-curves for the reference axiz' are simply
the same as for the azimuph= 0, and for the other reference axes, the righdnngs increase,
assuming maximum values for the azimgth 90° and270°, at the cost of increasingly extend-
ing intervals in which the ship cannot be longihadly balanced (Figure 20). The said figure,
identical for the reference ax@&x" andOy, illustrate at the same time the effect of azimuth
on the righting arnh = GZ and dynamic arnh for a fixed value of the heel angle= 11°. It is
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worth noting that minima of the dynamic afghave the same values and occur at the same
azimuth, irrespective of the reference axis.
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Figure 20. Run of the righting arhand dynamic arry for rig Il
versus azimuti for a given heel angle

Nonetheless, as prompted by regulations,GHecurves are calculated for any orientations.
This is possible only, when the platform is londihally unbalanced or wrongly balanced. If the
ratio L/B is too small, the lack of longitudinal balance cacur also for inclinations around the
longitudinal axis, which makes it impossible todfithe GZ-curve. The lack of balance does not
mean, however, that the platform then rears, as pifications claim [23, 24]. This phenome-
non itself is termed there agthogonal tipping It is said that stability is theflading in contrast
to vanishingstability. The maximum trim in terms of absolute values degeon a given heel
angle and does not generally exceed a dozen cegrees. For example, for platform Il, for the
heel anglex' = 6° the angled > -9,83°, and fora' = 11° the angled > -15,21°. Orthogonal tipping
does not take place in reality, which becomesesgifanatory in the light of the Krilov—Dargnies
method.

6. GZ-CURVE OF MINIMUM STABILITY

As previously mentioned, most heeling moments gatim the ship, including the wind heeling
moment, are parallel to the PS, therefore a fieatifig ship assumes the position in which the
trace of water in the PS is normal to the rotaptane. In the case of platforms arbitrarily ori-
entated to the wind, the wind generated heeling emins parallel to the wind impact plane,
perpendicular to the wind direction in an upriglosipion, fixed to the platform. Hence, the
heeling moment is parallel to the trace of wateghmimpact plane, whereas the rotation plane
is perpendicular to the said trace. A question @r@éses which position does the ship assume
when the direction of the moment is not relateth®ship?

In order to answer unequivocally this question, tiiechanism of inclining the ship in the
case of dree heeling moment must be known, as e.g. the ondtiggirom shifting a weight
on board, or loading a weight at any place on g $n such a case the ship assumes a position
in which the potential energy is minimal, i.e., therk required to incline the ship is the lowest.
This property has a freely floating ship, longinally balanced. For a given heel angle there is
only one equilibrium positioe(® = 0, corresponding to minimum energy, independenhef t
reference axis.
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The work is proportional to the dynamic arm, hetieeminimum of potential energy cor-
responds to the minimum of the dynamic &gngiven by equation (48), valid in any case. From
the classic ship theory it is known that the dyraarm depends on the run of metacentric radii
in function of the heel angle, which for a fredlyating ship means in function of the rotation
anglen of the rotation plane. Hence, in a general case:

la=]. resin( - v)dv - a(1 - cos) (59)

wherev is a dumb variable of integration, varying fr@to n (given angle of rotation of the
rotation plane)r; is the metacentric radius in the rotation plangsrgby equation (28), whereas
a = B,G is a constant, equal to the distance between the
centre of buoyancy and centre of gravity at anglyri
position. It is obvious that the minimum is depantde
on the first integral term in equation (59), whishmini-
mal for the least metacentric radii in functiontbé
rotation anglen. And this happens, when the angle
by which the axis of floatatiohis deviated from the
axis of rotatione, given by equation (44) or (45), is
= minimal. This happens, when the azimuth= 0, and
f £, when the ship is longitudinally balanced.
In other words, the ship inclines around the instan
Figure 21. Projection of curve of cen- taneous axis of floatation That is, it rolls over a non-
tres of buoyancy on the waterplane Circular cone (a fixed axode), tangent to the vpddere
along a generatrix, coinciding with the axis ofatia-
tion. The centre of buoyand moves in the ship system along a spatial curweg lgn the
surface of a horizontal cylinder of varying radinfscurvature, forming a kind of a helix, in-
tersecting at a certain angle the stationary mnapilane (the large circle in Figure 3-5). At
each point the said line has a tangent, paralléh¢aespective waterplane and normal to the
axis of floatation (Figure 21). The righting atm GZis a chord of the arc, created by the pro-
jection of the curve of centres of buoyancy on dka surface, the axis of rotatierns per-
pendicular to the righting levéy inclined at an anglg with respect to the axis of floatatidn
while the dynamic arrhy is an increase of the vertical distance betweant$6 andB.

The righting arml = GZ lies at the vertical rotation plane, stationargpace, passing through
pointsG andB. The centre of buoyancy moves in the rotationgkliong a flat curve of centres
of buoyancy, whose metacentric radigs= J;/V, whereJ; is the transverse moment of iner-
tia of the waterplane, given by equation (35), deleat on the waterplane geometrical charac-
teristics in the system related to the axis oftrotee.

The leastGZ-curve, termed th&Z-curve of minimum stabilitig identical with the curve
for a freely floating ship, related to the adz' The righting arm for a given heel angle corre-
sponds to the first zero of the cuiyes el in function of the azimutly (Figure 19). In this
point the absolute minimum of potential energy esciminimum of the dynamic ariq),
clearly seen in the said figure, consistent withrtieaning of this curve. The axis of floatation
f is located between the axis of rotatmand the principal axis of inertia of the water@gn
as discussed in section 4.4,

GZ-curves for the reference ax@g, Oy have the least values for the azimgth 0. They
have the same area between the angle of equililandrangle of vanishing stability, as in the
case of the axi®z. Therefore, they can also be regarded as the swfvminimum stability.
The direction of the righting moment for the saaference axes, described by the axis of rota-
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tion g, is stationary in space. The same applies todfegance axi©z, though it is said litera-
ture that the righting moment of the curve of miammstability has a varying direction in space,
which is not true. The plane of rotation (the laoyele in Figure 3, 4 and 5) is stationary in
space, and the same applies to the axis of rotatioormal to it.

A significant feature of th&Z-curve for a freely floating ship, irrespectivetbé reference
axis, is that in a general case the axis of rataineither coincides with the principal axis of
inertia of the waterplang& nor with the axis of floatatioh This feature applies also to G-
curves related to the wind impact plane.

If for a given heel angle the wind impact plane siash an azimutly that the dynamic arm
|4 after balancing achieves a minimum than in alldages not only righting arms are the same,
equal to the minimal value, but also the angle®tHtionn of the plane of rotation. Equality of
the angles of rotation (angles of heel) stems ftloenfact that the wind impact screen passes
then through the edge of intersection betweenrttti@liwaterplane and the sea level, while the
vertical frame is perpendicular to the said edgesuch a situation there is a common angle of
rotation of the plane of rotation

n=¢=a
irrespective of the line of nodes, which was disewdsearlier. Hence, when for a given heel
angle the axis of rotatioa corresponds to the minimal dynamic dgnthere exists only one
minimal value of the righting arm, irrespectivetioé reference axis.

In ABS publications [23, 24] th&Z-curve of minimum stability is found by the analysif
the dynamic arnty, as the function of the Euler's angleando, related to the reference axis
x'. For this purpose, iso-energy contolyrs constare used in the plane of the two said angles
(Figure 22). Applying the method of the steepestdpt path (SDP) it is possible to find a curve
of the least dynamic arms, and thereby a curvhefdast righting arms. They are both a func-
tion of the angle of rotation = ¢ = o' of the rotation plane, though this fact is unmeamsid in
the publications.
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Figure 22. Steepest descent method (SDM)
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The steepest descent method is complex, time cangui requires hundreds of calculation
points for the ship longitudinally unbalanced), adirely detached from the mechanism of
inclinations with the least work. Nonetheless,sitidentical with theGZ-curve of mini-
mum stability for a freely floating object, asstfor the reference ax3z.

Another possibility of calculating th@Z-curve with free trim is th&ee twistmethod, ap-
plied by van Santen [21, 21]. In this method arsafirotatione = w is sought on the initial
waterplane to be perpendicular to the righting bafter rotation by a given heel anglearound
the axis. Thé&Z-curve thus obtained corresponds to the referexiséda’. Such a method, how-
ever, is not the most effective, particularly farge heel angles.

The GZ-curve of minimum stability can be best found asaféreely floating ship, for the ref-
erence axi®©z, since the two curves are identical. For a giveel anglep or o' the trim angle
6 ord' is found by iterations until the ship is longitndily balanced, i.ee(® = 0, where the axis
of rotatione =w and the unit vectan are given by equations (20). The knowledge ohler’s
angles (the heel and trim angles) defines thewaatorn, and this in turn defines the analytical
anglesp ande, essential for calculating the geometrical chandstics of the hull.

The curve of minimum stability can be obtained &b the help of the wind screen, described
by the azimuthp. Two reference axes can be us@d: andOy. For the first one, the rotation
axise = e;xn, where the unit vectoes andn are given by equations (14) and (15), for the sec-
ond, the rotation axis= e/ and the unit vectar are given by equations (16) and (17), The latter
guantity value defines the analytical heel anglesd6, essential for calculating the geomet-
rical characteristics of the hull. The unit veatodepends on three degrees of freedom, depend-
ent additionally on the azimutpy whereas the axis of rotati@on two (in the case of the axis
Ox") or three (in the case of the akly)). Hence, the condition of longitudinal balareie = 0,
for a given heel angle and azimuth defines thelibgum trim. Knowing the three degrees of
freedom the righting arrsZ and dynamic arnly can be obtained. Exemplary graph of these
guantities in function of azimuth for a fixed helgle is shown in Figure 20. It is worth not-
ing that in certain intervals of the azimuth thé& eannot be longitudinally balanced, and thereby
stability characteristics cannot be obtained.

Graphs in Figure 20 concern the a®ig'. A similar graph for the axi®y is practically the
same; the differences are imperceptible. Themisimum of the curvéy (in this case, because
of the almost constant value the maxim@@can be used) defines the righting arm of the curve
of minimum stability for the angle of heel = 11° in the direction of initial heel, whereas the
second minimum — the righting arm for the sameeaafjheel, but in the opposite direction. These
values, as physical quantities, do not depend endference axis. Hence, the reference axes
Ox', Oy andOZz have a common curve of minimum stability, as lfier &xisOz, and a common
axis of rotatione. The last curve (for the reference a&ig) can be easily found by routine
calculations.

As can be seen, the determination of @¥curve with free trim is time consuming, since
apart from balancing the displacement of the skitdrations, we have to balance the ship lon-
gitudinally. The labour intensity can be drastigaktduced by the Krilov—Dargnies method,
which in a natural way tracks movements of the akifoatationf during inclinations. In this
method the new position of the ship is found withay iteration, making use of the differen-
tial properties of equi-volume waterplanes.

If we assume that in order to find the proper vadudisplacement and trim we need on av-
erage4 -5 iterations, then to find one point of tl&-curve with free trim we need on average
4°+5° = 16+25 iterations. Hence, the Krilov—Dargnies method widag16+25 times faster than
buoyancy methods, which makes it worth considering.
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7. NUMERICAL EXAMPLES

Based on the above theory of calculations ofdEecurve for a freely floating ship, Dr. Andrzej
Laskowski, the author of the software package WHSEed in PRS for stability calculations,
modified the software. The user can choose betiteea modes of calculations: 1) “engineering”,
related to the axi®©x or OX', 2) “physical”, related to the ax@y or Oy, and 3) “natural”, re-
lated to thez-axis, identical with the curve of minimum stalyiliThere is also a zero option of
“maximum stability”, for a ship with constant trimormally not used.

Calculations for conventional ships show that theiae of the reference axis is meaningless.
This is because for trims that occur the afgheetween the traces of water in the PS and mid-
ships is virtually equal to the right angle. Itlgethe same rotation axes, independent of the ref-
erence axis. At the initial range, up to the deddgeemmersion, all the modes of calculations are
virtually identical. The reason are small anglesven for the extremely asymmetric waterplanes.
The above feature is well illustrated by the foliogvexample.

ExAmMPLE. Consider a rectangular waterplane, which in theage condition lost ¥4 of the area (see
Figure 23). The area of the waterplakhe %.LB.
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Figure 23

The product of inertia of the waterplane is prodds a quarter of the waterplane above the damaged
part. HenceD = Y(VA)?Y4(¥B)? = Y (LB)A

Calculating the static moments we can easily fimel ¢o-ordinates of the centre of gravity of the
waterplanexc = YL, ye = 1.B. The moments of inertia of the waterplane areghes

Ji= 1L B — V(¥AL) (¥B)® = (Y1, — Yis)LB = YL B3
J, = %eBL>

Applying in turn the parallel axes theorem, we thet central characteristics of the waterplane:

Ji = I — Aye® = 6L B® — %L B(4,B) = Wi, B
Jy =3, - Ax.” = 1,1eBLE
D' =D - AxcYe = % (LB)? — %L B(=Y1,L) Y1oB = (Yo + ¥4'h2112)(LB)? = Yse(LB)?

The radius of the inertia interval = ¥%(J; - Jy) = ¥,%e(LB® - BL®) = ", %s(% - 75)(LB)>. Hence,
the principal axes are rotated by the anglgiven by equation (25):

tan2y = -D'/a = -5 (LB)?16%1./(%. — 16)(LB)? = %11/ (15 — ®)

For a positivey, the rotation is anticlockwise. For a typical odtiB = 6, we get barely the angle=
3.55°, although asymmetry of the waterplane is maximunis Eixplains why th&Z-curve of mini-
mum values at the initial range of stability canddter significantly from the remaining modes of
calculations. Further, we can see from the abovatsun that the anghedepends strongly on the ra-
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tio L/B. If this ratio decreases, the anglimcreases. For instance, 10B = 3, the angley = 7.63°, while
for L/IB = 1, y = 45°. Ipso facto, the differences between various mbegesme bigger. For this reason,
the GZ-curve of minimum values is particularly pertindot semi-submersible platforms, for which
L/B = 1, for small vessels, as fishing boats, for whi¢B = 2.5+4, and for normal ships — in damaged
condition.

For illustration,GZ-curves were calculated by the said modes of caficunls for four ships:
a fishing boat and a barge in intact and damageditons, as well as for two jack-up rigs in
damaged condition.

7.1. Ships

Main particulars of the cutter are as follows:
length between perpendiculars .....................L;p = 23.9m,
breadth ... B=6m,
AePth oo H=31m,
design draught..........ccccceeeiiiiiiiiiiiiimmccme e T=27m,
block coefficient ..........oviiiiiiiii Cs = 0.63,

Body lines of the cutter are shown in Figure @Z-curves of the cutter in Figure 25, while the
run of trims in Figure 26 and Figure 27. The vedss a transom stern of a long overhang
and a large forecastle.

Figure 24. Body of the sample boat
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Figure 25.GZ-curves of the boat

Calculations were performed for a freely floatimggict vessel in a partial loading condition,
trimmed by the stern, by the three modes of caliara, defined by the reference axey, and
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z' in function of the appropriate angle of rotatipnin addition, calculations were performed
for the ship with fixed trim, as at the positionagjuilibrium (curvec), and at level keel.

As can be seen from Figure 25, at the initial ramiggtability (up to the anglenax at which
the GZ-curve reaches maximum) all the calculation modsld yhe same results. The differences
start abovemax As expected, the highest values of @ curves for large heel angles (in the
sloping part) are obtained for the ship at levell kgreatly overestimating the range of stability.
Somewhat smaller values are obtained for the siiip fixed trim, as at the initial position
(curvec). Both curves converge at the heel arggfe

As should be expected, the le&gt-curves are obtained for the ship with free trinhenein
these curves are practically unaffected by the tiwayship is balanced. Hence, the choice of the
reference axis has no meaning. These curves pictiollapse into one curve, as the correspond-
ing run of trims, measured in the PS, is practadientical (Figure 26), irrespective of the ref-
erence axis, which entails virtually the same rotabxese (the angles between thea y; =
0) and heel angles (rotations of the planes ofiostatFree trim rapidly increases for heel angles
larger than 30°. Therefore, curgeup to this angle coincides with the GZ-curves Viige trim,
well visible in Figure 25. As should be expectagtyec and curve for level keel converge. The
curves in Figure 25 resemble those in Figure 1.
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Figure 26. Run of trims in PS during heeling the Figure 27. Run of twist angle around
boat, depending on the reference axis axisOz during heeling the boat

Figure 27 shows the run of the angle of twist (Jrior the reference axi®z'in terms of the
angle of heel for the boat inclined to starboard.cAn be seen, for intact symmetric boats the
angle of twist does not assume large values (xdise does not exce#d, and for inclinations
to portside the twist would be the same but ofdpgosite sign.

Figure 28 shows the run of stability charactersstar the cutter in function of the angle of
twist W for a given heel angle = 55°. The curve<$sZ andly are symmetric and the curlge=
el is antisymmetric with respect to the angle- 90° and270°. After rotation by an angle
=90° or 270° PS coincides with the plane of rotation, resulimg longitudinal balance of the
ship. The righting arm and the dynamic arm reaem ttheir maximum. This is a feature of
intact ships, with no initial heel, having a PSthHe rangey 0 (0°, 180°) the bow is immersed
in water and the stern is above, while in the raHde (180°, 360°) it is vice versa. At a point
WY =0, the ship is inclined towards starboard, and@iat W = 180°, towards portside.

It is worth paying attention to the curle= €, i.e. the longitudinal component of the righting
arm. From equation (42) it follows that its derivatdl/oW = -H,s. This curve has an oscilla-
tory character with respect to the twist angllewhich entails the oscillatory character of the
longitudinal metacentric height ;. In the extreme points ¢f the longitudinal metacentric
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height vanishes, i.¢ds = 0. We can see from Figure 28 that zeros of clydefine not only
the extremes of the curve of dynamic arms andingharms, but they are also points of in-
flexion, i.e. the extremes of the longitudinal noetatric heighH,s. In the increasing paH,

< 0 is negative and decreasiHg > 0 positive. In the first and third equilibrium pasit, with
minimum potential energy, there is a stable equiin (H.s > 0), whereas in the second and
fourth — unstableHs < 0).
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Figure 28. Run of transverse and longitudinal congmds of the righting arm
and dynamic arrh, for the boat versus angle of twitfor o' = 55°

The cutter is a small boat. We will now see stgbdharacteristics for a large vessel, i.e. the
barge investigated by van Santen [20]. Its mairedsiond.xBxHxT = 140x36 x8,5x5 m, KG

= 17 m. The barge has a forecastle with dimensiofis= 25x8 m (Figure 29). Both units
have almost the same ratiéB, close to4. The GZ-curves of the barge are shown in Figure
30, the run of trims in Figure 31, and the rurvaétd in Figure 32.
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As for the cutterGZ-curves (Figure 30) and trimtgFigure 31) do not depend on the choice of
the reference axis. However, contrary to the cutiéer immersing the deck edge in watgr (
= 11°) the differences between tk&Z-curve at level keel and with free trim are modesis is
because of the proportionally smaller forecastie f@k the cutter, trims in terms of angles are
small (Figure 32). For a heel angle= 35°, the twist angle equals merely= 2,3°. In general,
for symmetric unit$sZ-curves for inclinations to the other side are-agthmetric.

Figure 29. Barge
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Figure 31. Run of trims in PS during heeling thegeadepending on the reference axis
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Figure 32. Run of twisk around axizduring heeling the barge

Figure 33 shows the run of stability charactersstar the barge as functions of the twist angle
for a chosen heel angle= 20°. The nature of these curves is similar to thoséhfe cutter.
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Figure 33. Run of transverse and longitudinal congmds of the righting arm
and dynamic arrhy for barge versus angle of twigtfor a = 20°

For comparative purposes stability of the barge areysed also in damage condition with
a flooded compartment of dimensiondxh = 14x7,2x4,5 m, adjacent to the aft, bottom and
starboard (Figure 34). As in the previous casesGhcurves (Figure 35) and trims do not
depend on the reference axis. A larger differermoeis now between th@Z-curve for a freely
floating ship and the curve at level keel tharhia intact case.

For damaged units, asymmetrically flood&l¥-curves for inclinations on both sides are
different. When inclined against the initial hewty are larger, see Figure 36.

The run of the angle of twist and stability characteristics for the damaged dasgvery
similar to those shown in Figure 32 and FiguretB8refore these graphs will not be shown. In
both cases, for any heel angle the cugJeas four zeros, wherein the first and third zexes
symmetric relative to the angle 90°. As we will s existence of theZ-curve for a freely
floating ship inclined to either side is contingemnt the above. Because of the initial heel the
GZ-curve for the reference ax@®z is indefinite in the neighborhood of zero on tldeoppo-
site to initial heel. According to equation (43jstinterval starts exactly at zero and ends at the
anglea’ = -0,10°, which cannot be perceived.

Figure 34. Damaged barge
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Figure 35.GZ-curves for damaged barge for inclinations to siart
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Figure 36.GZ-curves for damaged barge for inclinations to tsites

7.2. Jack up rigs
There were two rigs investigated | and Il. Maintgardars of the first one are as follows:

[ENGEN ... ——————— L.=73.659 m,
(0] =T= 16 11 o T B.=54.222 m,
AEPEN oo H.=6.755m,
draught.......ooo e TI.=5m,
waterplane coefficient of fineness ... cw = 0.668.

ratio of waterplane principal moments of inertighe upright......J,/J, = 1.73.

The platform is shown iRigure 37 GZ-curves are shown in Figure 38, while the run iofigr
is given in Figure 39 to Figure 41. Calculationseveerformed for a damaged platform, trimmed
by aft, and inclined to starboard with a heebffor the same modes, as for the cutter, for incli-
nations to starboard.

As can be seen from Figure 38, similarly as inghevious case, all the calculation modes
at the initial range of stability yield the samdues of the righting arms. Some visible differ-
ences refer solely to the platform at level kediey result from the fact that — due to asym-
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metric flooding — the principal axis of inertia thie waterplane is deviated from the PS, while
this mode assumes the axis of rotation parallgiedPS.

Figure 37. Jack-up platform |
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Figure 38.GZ-curves for platform | inclined to starboard
(in the direction of initial heel)

The largest righting arms yield the platform atdekeel, largely overestimating the range of
stability. Somewhat smaller values are obtainedHership with fixed trim, the same as at the
initial position. Both curves converge, when thelrangle tends to 90°.
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Figure 39. Run of trims in PS during heeling platid, depending on the reference axis

The GZ-curves with free trim are obviously smaller thamhwiixed trim. The way of balanc-
ing has a modest effect on t&Z-curves. The reference axesandy yield almost identical
righting arms, as the angles of h¢edndg are virtually identical. Hence, these curves ddiec
with each other. On the other hand, the anglese somewhat larger thanande, therefore

the range of th&Z-curve related to the reference a&ig'is somewhat larger than for the two
first curves. Since the area under the curvesdbe the same, the curve of larger range has to
intersect with the curves of smaller range. Degpi¢elarge trims in the PS (Figure 39), differ-
ences between the heel angle® anda’ do not exceed?’.

Figure 40 shows the run of the angle of twist (Jraround the axi®©z' for platform | as a
function of the angle of heael, inclined to starboard. Due to asymmetric floodamgl a small
ratio L/B, the angles of twist assume large values andnidmiations towards portside, the
graph would not be antisymmetric (Figure 41). Am ba seen, the range of change of twist
is much larger than for inclinations to starboanald is of different character. For heel angles
o' < 2,5° towards portside the angle of twist is undefingohilarly, different runs would be
obtained for bow and aft inclinations.
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Figure 40. Run of twist angle around a&ig Figure 41. Run of twist angle around agig
during heeling platform | to starboard during heeling platform | to portside

The run of stability characteristics for platfornmlfunction of the angle of twist for given
heel anglex' = 14° is shown in Figure 42. As in the case of the cyfegure 28) graphs d&Z
andly have two minima and two maxima, and what goes iyithere are four positions of equi-
librium. Because of the initial heel, the run aégh curves is more complicated than for the cutter.
At the first equilibrium position, which is stablainimum of graph$Z andly is absolute. The
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third equilibrium position corresponds to inclirats to the other side. Four zeros of the curve
le means that the righting arn® exist for inclinations in both directions. In tbase of rigs it
does not have to be so. For certain heel anglesutivel, can have only two zeros, as in Figure
43, with one minimum for the dynamic afm
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Figure 42. Run of transverse and longitudinal congmds of the righting arm
and dynamic arrty for platform | versus angle of twist for o' = 14°
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Figure 43. Run of stability characteristics fortfidam | in function of twist¥ for o' = 2°

In the case of rig | such a situation occurs fal lamglesy’ < 2,5° (at the angle’ = 2,5° pointB

in curvel. becomes tangent to the abscissa axis). It meangathinclinations to portside the
rig cannot be longitudinally balanced, and therglgyfree trimGZ-curve cannot be obtained,
nor the angle of twist. Note that at the rang&’ ef 165°+215° (Figure 43), i.e. at the flat segment
of l¢ up to pointB a neutral equilibrium occurs, with the longitudingetacentric heightl s = 0,
whereas above this point — unstable. In such a, ¢hseig will turn spontaneously Hg0°
around the axi®©z'to assume a stable position, corresponding tditstezero of the curvé,
inclined to starboard, where the only minimum ofgmtial energy occurs — minimum of the
dynamic armg.
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For inclinations to starboard tl&Z-curve exists in the whole range (Figure 38). Ihatii
nations to portside, theZ-curve exists fon' < -2,5°, i.e. when the third zero of the curke
exists, associated with positive metacentric height > 0 (approximated equation (43)
yields the anglex = -1,9°). Intuitively, everybody would expect that for imations against
the initial heel the stability is better. It is dmt for heel angles' < -2,5° (Figure 44), which is
better seen in Figure 46 — the range of stabiliig the maximum lever are markedly larger
than for inclinations to starboard.
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o \ S | /
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Figure 44.GZ-curve for platform | inclined to portside for axdxz'

However, for heel angles 0 (-2,5°, 0y, theGZ-curve does not exist, due to the lack of longi-
tudinal stability, unless the rig will rotate bg0° around thez' axis, assuming values as for
inclinations to starboard (Figure 5). For otheerehce axes, such a problem does not exaat-—
curves exist for any angle of heel to portside (Feg45, Figure 46), wherein they complete the
free trimGZ-curve for the axi©z' at the range, where it is indefinite.
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Figure 45.GZ-curves for platform | inclined to portside

From equation (42) it follows that at an uprighspimn o' = 0 the metacentric heigh, is
discontinuous; on one side of zero it is positiad theGZ-curve exists, and on the other side
it is negative and th&Z-curve does not exist in a certain range, whichbmageen in Figure 44.
This is a feature of freely floating ships withiartial heel, which is contradictory to intuition.
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Figure 46. GZ-curves for rig | for inclinations both sides

Main particulars of platform Il are as follows:

length ..o L =581m,
maximum breadth ..........ccoevvveev e Bo=722m
minimum breadth...........ccoovieiiiii e B.=14m,

(0 1= o)1 H=7m,
draught.........o s T=4.65m,
waterplane coefficient of fineness.................. cw = 0.597,
height of centre of gravity above BP..................... KG =24.37m,
ratio of waterplane principal moments of inertia

iN an upright POSILION.........ccoeiiiiiiiiimrreneee e J/J=1.06

Figure 47. Platform Il

This is a fictitious jack-up platform of simple geetric shape (Figure 47), conceived by ABS for
testing calculations, widely investigated in litewra [20, 23, 24]GZ-curves are shown in Figure
48, while the run of trims in Figure 49 and Figbfe Calculations were performed for a dam-
aged platform, trimmed by aft € —2.058 m), inclined to starboard with a haer3°.
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Figure 48.GZ-curves of rig Il inclined to starboard

As can be seen from Figure 48, all the calculatdes yield practically the same values of
GZ-curves at the initial range of stability. Abovésthange, the largest values correspond to the
platform at level keel. As in the case of platfdyithe way of balancing has only a modest effect
on GZ-curves. Th&sZ-curves for the reference axeandy, as before, are almost identical, as
the heel angleg¢ andg, despite the large trims in the PS (Figure 49 vartually the same,
which means the axes of rotation are almost padr&lkence, these curves coincide with each
other. On the other hand, the heel anglese somewhat larger than the angiesde, which
results — as before — in a somewhat larger rangeadility. Since the area under the curves
has to be the same, the curve of larger rangesités with the curves of smaller range, and it
has a smalleGGZ.x value. If the axes of rotation for the referengessOX’, Oy' andOz' are
the same, then th&Z-curves correspond to minimum stability. This olilagon confirms
Figure 48, where the three curves collapse intocoinee.
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Figure 49. Run of trims in PS during heeling rigdépending on the reference axis

Figure 50 shows the run of the angle of twist (Jraround the axi®Z'in function of the angle

of heel. Because of an asymmetric flooding and @lgwatio L/B, these angles assume yet larger
values than for platform I. But the waterplaneymmetric, therefore twist (rotation) of the
platform starts above the angle at which the detkre the water. As before, the graph has a dif-
ferent character for inclinations to portside (Fegb1). The range of change of the twist angle
for inclinations to portside equal$’, while to starboard equa®sé°. For heel angles' < 7,4°
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to portside the twist angle is indefinite. It medinat in the range’ O (-7,4°, 0) the GZ-curve
is indefinite (the approximated equation (43) ysellde angle’ = -3.1°).
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Figure 50. Run of twist around ax@ Figure 51. Run of twist around ax@z'
during heeling rig Il to starboard during heeling rig Il to portside

The run of stability characteristics for rig Il fanction of the angle of twis¥ for a heel angle

o' = 11° is shown in Figure 19. Similarly, as in the cabe@l (Figure 42) there are also four
equilibrium positions, corresponding to extremeueal of the righting arrh= GZ and dynamic
arm l4. However, theGZ-curve has two additional extreme points, corredpanto points of
inflexion on the curve of dynamic armg The reason for this strange behaviour is a small
ratio of the principal moments of inertia of theterplane in an upright position, closelto
For rig 1l this ratio equalg.06, whereas for rig | equals73. Nonetheless, as in the previous
cases, at the first equilibrium position minimatod curvessZ andly are the lowest, while the
third equilibrium position corresponds to the hegbortside, wherein both are symmetric relative
to the angle 90°.

From Figure 19 it follows that for platform Il arface of dynamic armig = l4(a’, W), termed
also as the energy to heel surface, should havedileys (paths), corresponding to minimum
l4. Meanwhile, Figure 22 showisreepaths (three minima). Admittedly, both figuresrespond
to different reference axes, but the choice ofréierence axis has no significant effect on the
dynamic arms.

Figure 52 shows the run of stability charactersstar a different heel angte = 6°. The run
differs from that for the angle’ = 11° (Figure 19). The curvie has now only two zeros, instead
of four. The zeros precisely coincide with the extes of the curve of dynamic arfgdut they
are clearly shifted off from the extremes of G&-curve. ApexB of the curvd, becomes tan-
gent to the abscissa axis at the antte7,4°. Hence, for heel angl® > 7,4° there are again four
zeros of the curvék (Figure 19), which is a condition for the existeraf theGZ-curve for
inclinations to portside. At the range< 7,4°, i.e. o' 00 (-7,4°, 0) this curve does not exist
(Figure 54), unless the rig turns by 180° arouredakisOz, assuming values as for heels to
starboard. Due to a yet smaller ratio of the ppatmoments of inertia of the waterplane at an
upright position and a larger asymmetry of flood{adarge negative righting arm at an upright
position), the range in which tli&Z-curve is indefinite due to the lack of longitudibalance,
is bigger than in the previous case, which resldts from the approximated equation (43). For
the reference axég3x andOy the GZ-curve do not exist for heel angles bele¥° (Figure 53,
Figure 54). However, they are not the curves ofimirm stability.
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Figure 53.GZ-curves of platform Il for inclinations to portside
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Figure 54.GZ-curves of platform Il for inclinations to both sisl

The angle of twist¥ andGZ-curve and for inclinations to portside are showikrigure 51 and
Figure 53. As discussed earlier, these charaat=iskist for the angle' < -7,4°. They were
obtained as readings for the third zero of the ely,vas in Figure 19. An identical curve can
be obtained from direct calculations for inclinasoto portside.
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Figure 55 shows the run of stability charactersstar a heel angle' = 6° in function of the
azimuth for the reference ax@x". We can see that these characteristic differferéference
axisOZ (Figure 52). Nonetheless, they both indicate theesteatures. Also here, due to the
fact that the angle of heel=6° is below the critical value 7.4°, a graph of tlyaamic armly
in function of the azimuth has only one minimumddfines a righting arm of the curve of
minimum stability for the angle' = 6° in the direction of the initial heel, identicaltithat in
Figure 52. The lack of the second minimum meanisftna heel on the other side the righting
arm does not exist. As we know from the proceedomsiderations, in the range @f] (-7,4°,
0°) the GZ-curve does not exist, as in this range of hedlearte ship cannot be longitudinally
balanced. From Figure 55 it follows additionallyatHor the heel angle = 6° the rig cannot
be longitudinally balanced, if the azimuth is fréine range ofp 00 (86°, 106°).
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Figure 55. Run of righting ar®Z and dynamic arrh for platform I
versus azimuti for heel angle less than critical

In the case of asymmetrically flooded units the@xies ofGZ-curves are somewhat shifted
relative to the equilibrium position. It can be simothat there is no shift, if the axis of rotation
e is parallel to the principal axis of inertia oktlwaterplane. A proof is simple — we have to
differentiate with respect to trim the righting atm GZ, given by equation (22). Considering
that the unit vector of the axis of rotatiemeed not be differentiated, we get the equation:

I'=el{r'xn) +el{rxn")

where ' stands for the differentiation with resgedrim. It can be easily shown differentiating
with respect t@ the unit vecton, given by equation (54), that the veator= sinx e is parallel to
the axis of rotatior, therefore the second term vanishes on the vaftpeoperties of the scalar
triple product. Further, the vectorhas two components: longitudinal and transverseom
tribution to the triple product gives only the tsarrse componemt = -nxeD"/V, where the
differentiation is with respect to trimy andD" is the product of inertia of the waterplane in the
&'n" system (Figure 11), parallel to the axis of tiotae. Hence,

9 GZ=-D"IV (60)

It follows from equation (60) that at the equiltom position an extreme of tl&Z-curve oc-
curs, ifD" =0, i.e. when the principal axis of inertia of theterplane is parallel to the axis of
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rotatione. In the case of conventional ships, even in tmeadged condition, the deviation of the
principal axis of inertia from the axis of rotatiens small; therefore a shift of the extreme of
GZ relative to the equilibrium position is impercdgdi. In the case of damaged rigs with four
zeros of the curvk, the shift is not large, but noticeable (Figure Bigure 42), whereas in the
case of two zeros, a clear shift is visible (Figd8e Figure 52).

It is interesting to see the run of the same styloiharacteristics in function of the twist angle
for the same fixed heel angig but for an intact rig ll. Such a graph is showririgure 56.
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Figure 56. Run of stability characteristic for icttaig ||
in function of twistw, fora' = 11°

As in the case of intact ships with no initial heegle the curve&Z andly are symmetric,
while the curvde = e[l is asymmetric with respect to the angle- 90° and270°. However,
unlike for the cutter (Figure 28), there are twaliéidnal points of longitudinal equilibrium,
where theGZ-curve and dynamic curdg have extremes. Hence, in this case, the energy sur
facely = l4(a’, W) would have three valleys, corresponding to mimimg The two first min-
ima, corresponding to inclinations to portside atatboard, are equal to each other but are
smaller from the third minimum.

8. CONCLUSIONS

The paper presents the theoretical basis for detatimn of theGZ-curve for a freely floating
ship, longitudinally balanced at each heel anglee& modes of calculations of t8&-curves
were discussed: 1) “engineering”, related to the gor X', 2) “physical”, related to the axis
ory, and 3) “natural”, related to theaxis, identical with minimum stability. Based dret
results of theoretical and numerical analysis fttlewing conclusions can be drawn:

a) a freely floating ship has minimum stability in teense of the area under tB&-curve.
The said area is independent of the referenceans the smallest possible

b) balancing of the ship does not change in spacditbetion of the righting moment, but de-
creases its value in proportion to change of &ftar balancing

c) at the initial range of stability all the modesaailculations (including the mode of fixed
trim) yield practically the same results

d) for conventional ships th&Z-curves are independent of the reference axis Wine of
balancing), while for platforms the effect is modes
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e) if the ship has an initial heel, tl&Z-curve is indefinite in some one-sided neighborhood
of zero, opposite to the initial heel, whose lengttreases with the initial heel. For ships,
it is of the order of angular minutes, and for folahs — of the order of degrees. The azimuth
(twist) of the unit in this range of heel is undggh.e., the unit can rotate automatically
around the axi®z'to assume a stable heel towards the initial heel

f) for freely floating units only on&Z-curve is meaningful, of minimum stability, as tbe
reference axi®©z' For other azimuths, they can have gaps in whiel are indefinite

g) the notion of cross-curves of stability is alsoiddbr a freely floating ship with minimum
stability, when the ship's centre of gravity varasng the axi©z', normal to the initial
waterplane

h) it is advisable to perform calculations of 8&-curve by means of equi-volume waterplane
method (Krilov—Dargnies), inclined around the imggameous axis of floatatidn It cuts
radically the time of calculationgg+ 25 times) in comparison to buoyancy methods, as it
needs no iterations

Thence, for ships there is no revolution — any wwetbf calculating th€&Z-curve with free trim
yields virtually the same curve, identical with mium stability. There is, however, a revolu-
tionary conclusion for platforms — there is onlyeaneaningfulGZ-curve, related to transverse
inclinations, as for the reference axidz' In other words, for rigs there are 6&-curves for
various azimuths, required by regulations. In theecof the reference ax@'they are the
same, irrespective of the azimuth, while for otteference axes they have, admittedly larger
values but at the cost of instable intervals, inciwhihe ship cannot be longitudinally balanced.
Hence, what sort of curves has been calculatedifeiEior rigs with fixed trim, or improperly
balanced. The latter is very probable; as suclonetas the reference axis, axis of rotation,
plane of rotation, and angle of rotation of thenglaf rotation are not mentioned in literature.
Interesting papers, for instance [20, 21, 23, 24hdt clearly state in which plane the rig was
balanced.
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Appendix — Transformation of moments of inertia

Elements of the inertia tensor in the systey rotated with respect to the systegnby an
anglea, are given by the following expressions:

Jex = J0Sa + Jyysirfa + Jysin2a
Jy = Jycosa + Jsirfa + Dsin2a

\]y'y' = JXXSII’IZC( + JyyCO§C( - JXySIHZG
J)(' = JySIHZG + JXCO§G - DSanG

Jx'y' = 1/2(\]yy - JXX)SIHZO( + JXyCOSZG
D' = v5(Jx — Jy)sin2a + Dcos2a

These expressions have double notations: in teerfiwv there is a tensor notation, while in
the second — a geometric (engineering) notation.

Introducing the notatiora = %(Jy — Jy) for a radius of the inertia interval (in navapéipa-
tions the radius is normally negative), ansl= %2(J, + Jy) for a centre of the interval, which
yields J,=s+a, Jy=s- a, the above expressions take the form:

Jy =S+ aco2a — Dsin2a =s+ &
Jy =s-aco2a + Dsin2a =s-a
D' = asin2a + Dcos2a.

As can be seen, the trace of the tensor is comkemel,y + Jyy = Jux + Jyy = 2S. When the prod-
uct of inertia vanishes, i.®' = 0, the tensor become diagonal, with values on thie ghago-
nal, termed th@rincipal moments of inertidvanishing ofD' defines the principal directions,
termed theprincipal axes of inertiaHence, the above yields an angle by which théesys
should be rotated, given by the equation2tan -D/a, in order for the axes of the system to
be the principal axes of inertia. In the rotatedtesm the radius of the interval is equal to
a = aco2a - Dsin2a.

Note that the radius of the interval and the proddignertia in the rotated system are har-
monic functions of the angle of rotation. Hence,

a = aco2a - Dsin2a = rcos (2 + 2a)
D' = asin2a + Dco2a = rsin2y + 2a)

wherer = (a? + D?)"? is an amplitude of the harmonic function (radifish@ Mohr’s circle),
wherea<y is its phase angle, whe?e= tari*(D/a). When the radius of the inertia interaat 0

is negative, the phase t&D/a) should be increased by an angge°. The product of inertia
varnishes, when the angle of rotatiorr -1.tarr’(D/a). The moments assume than the prin-
cipal values, equal taly=J; =s-r, andJy=J, =S+T.
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Nomenclature

a height of gravity centre above buoyancy centregright position of the ship
radius of the inertia interval of the waterplane
centre of buoyancy

BP base plane

BZ = -r [h, height of the centre of gravity above the cenfrBuoyancy
D product of inertia of the waterplane

D ship buoyancy (weight of displaced water)

e direction of rotation axis (unit vector normal tiaupe of rotation)
e, e unit vectors of traces of water in PS and in thesimps section

F freeboard

F centre of floatation (centre of gravity of the watane

f unit vector of axis of floatation

g acceleration due to gravity

G centre of ship gravity

hy metacentric heighGM

H. =R_ - BZ longitudinal metacentric heigl@M,

i,k unit vectors ofOxyzsystem
i'j, K unit vectors ofOx'yz'system
i unit vectors ofOx' = (cosBy, 0, SinBy)

K unit vectors ofOz' = (-sin®,, 0, cosBy)

Ji, & principal moment of inertia of the waterplane

Jr transverse moment of inertia of the waterplandrily floating ship
N’y longitudinal moment of inertia of the waterplane

L, B, T length, breadth and mean draught of ship, respagti

[ g righting armGZ and dynamic arm

le = e[, distance of centre of buoyancy from the planeotdtion

n unit vector normal to waterline, directed upwards

Oxyz coordinate system fixed to ship, whose origin ip@ntK (point of intersection
of the PS, midships, and the BP)

Ox'yz' systemOxyzrotated by anglé, around the axi®y

OXYZ coordinate system fixed to the plane of rotation

P weight of ship

PS plane of symmetry

r =GB = (Xs — X&, Y8 — Yo, Z8 — Zs), radius vector of the centre of buoyancy relative
to the ship centre of gravity

s = J;/V, transverse metacentric radigis

R =J,'/V, longitudinal metacentric radius

S centre of the inertia interval of the waterplané# of the polar inertia moment
of the waterplane with respect to the centre aitiionF)

\% volumetric displacement of ship

w unit vector of the trace of water on the initialter@lane

Al correction of righting arm obtained with help obss-curves of stability, accounting

for oblique displacement of the centre of gravélative to rotation plane, due to
change of the height of ship gravity centre abolRe B

9 angle between traces of water-level and PS in BP

9 angle between traces of water-level and PS dialinvaterplane
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angle of inclination ok-axis relative to sea level

angle between BP and water-level

angle between initial waterplane and water-level

angle between traces of water in PS and midships

angle of inclination of axis of rotation e withspect to trace of PS on the waterplane
angle between axis of floatatiband axis of rotatioe

angle of deviation of PS from the vertical, ideatiwith angle of inclination of-axis
relative to sea level

angle of deviation of PS from the vertical, thensaas angle of inclination gfaxis
relative to water-level

specific gravity of water

angle between principal axis of inertia of watengland trace of water in PS
deviation of axis of rotatior from trace of water in PS

angle of rotation of plane of rotation in genarate

angle of inclination of trace of water in midshisative toy-axis of ship

angle of inclination of trace of water in PS relatto x-axis of ship

angle of ship trim at upright position

water density

co-ordinate system of the waterplageakis coincides with the trace of water in the PS)
central system of the waterplane, parallel to sysie

central system of the waterplane, wh&raxis is parallel to the axis of rotatien
system of principal axes of inertia of waterplane

angle of rotation of the waterplane around axdagrerse to axis of rotati@n

=y + 9, twist — angle between traces of water-level aBdR initial waterplane

for a platform with changed orientation relativethe wind direction

azimuth — angle between the wind impact plane e P



