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1 GENERAL
1.1 Application
1.1.1 Application

This Publication applies to the following types of steel ships with a length L of 90 m and greater and
operated in unrestricted service
1. Container ships,
2. Ships dedicated primarily to carry their load in containers.

1.1.2 Load limitations

The wave induced load requirements apply to monohull displacement ships in unrestricted service and
are limited to ships meeting the following criteria:
(1) Length 90 m<L<500m
(i1) Proportion 5<L/B<9; 2<B/IT<6
(ii1) Block coefficient at scantling draught 0.55<C3<09

For ships that do not meet all of the aforementioned criteria, special considerations such as direct
calculations of wave induced loads may be required by PRS.

1.1.3 Longitudinal extent of strength assessment

The stiftness, yield strength, buckling strength and hull girder ultimate strength assessment are to be
carried out in way of 0.2L to 0.75L with due consideration given to locations where there are significant
changes in hull cross section, e.g. changing of framing system and the fore and aft end of the forward
bridge block in case of two-island designs.

In addition, strength assessments are to be carried out outside this area. As a minimum assessments
are to be carried out at forward end of the foremost cargo hold and the aft end of the aft most cargo hold.
Evaluation criteria used for these assessments are determined in PRS Rules for the Classification and
Construction of Sea-going Ships Part I — Hull.

1.2 Symbols and definitions

1.2.1 Symbols

L — rule length, in m, as defined in JACS UR S2;

B — moulded breadth, in [m];

C — wave parameter, see 2.3.1;

T — scantling draught in m

Cp — block coefficient at scantling draught;

Cw — waterplane coefficient at scantling draught, to be taken as:

_ Ay

sy

Aw — waterplane area at scantling draught, in [m”];

Rey — specified minimum yield stress of the material, in [N/mm®];

k — Material factor as defined in IACS UR S4 for higher tensile steels, £ =1.0 for mild steel
having a minimum yield strength equal to 235 N/mm?®;

E — Young's modulus in [N/mm?] to be taken as £ = 2.06-10° N/mm?” for steel;

Mg — vertical still water bending moment in seagoing condition, in [kNm], at the cross section
under consideration;

Mmax, Msmin  — permissible maximum and minimum vertical still water bending moments in seagoing
condition, in [kKNm], at the cross section under consideration, see 2.2.2;

My — vertical wave induced bending moment, in [kNm], at the cross section under
consideration;



Fs — vertical still water shear force in seagoing condition, in [kN], at the cross section under

consideration,;

Fomaxs Fsmn — permissible maximum and minimum still water vertical shear force in seagoing
condition, in [kN], at the cross section under consideration, see 2.2.2;

Fy — vertical wave induced shear force, in [kN], at the cross section under consideration;

q» — shear flow along the cross section under consideration, to be determined according to
Annex 1;

JNL-Hog — non-linear correction factor for hogging, see 2.3.2;

JNL-Sag — non-linear correction factor for sagging, see 2.3.2;

fr — factor related to the operational profile, see 2.3.2;

et — net thickness, in mm, see 1.3.1;

tres — reserve thickness, to be taken as 0.5mm;

Lo — net vertical hull girder moment of inertia at the cross section under consideration, to be
determined using net scantlings as defined in 1.3, in [m*];

OHG — hull girder bending stress, in [N/mm?], as defined in 2.5;

THG — hull girder shear stress, in [N/mm®], as defined in 2.5;

X — longitudinal co-ordinate of a location under consideration, in [m];

Z — vertical co-ordinate of a location under consideration, in [m];

Z, — distance from the baseline to the horizontal neutral axis, in [m].

1.2.2 Fore end and aft end

The fore end (FE) of the rule length L, see Figure 1.2.2, is the perpendicular to the scantling draught
waterline at the forward side of the stem.

The aft end (AE) of the rule length L, see Figure 1.2.2, is the perpendicular to the scantling draught
waterline at a distance L aft of the fore end (FE).

AE T FE
' Midship i
ER il
Y
L2 L/2
=g ST - . 8 e -
R >

Fig. 1.2.2 Ends of length L
1.2.3 Reference coordinate system

The ships geometry, loads and load effects are defined with respect to the following right-hand
coordinate system (see Figure 1.2.3):

Origin: At the intersection of the longitudinal plane of symmetry of ship, the aft end of L and the
baseline.

X axis: Longitudinal axis, positive forwards.

Y axis: Transverse axis, positive towards portside

Z axis: Vertical axis, positive upwards.
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Fig. 1.2.3 Reference coordinate system

1.3 Corrosion margin and net thickness
1.3.1 Net scantling definitions

The strength is to be assessed using the net thickness approach on all scantlings.
The net thickness, #,.,, for the plates, webs and flanges is obtained by subtracting the voluntary
addition #,,;_qs and the factored corrosion addition f. from the as built thickness #,; i, as follows:

ZLnet = ZLasibuilt - tvoliadd - atc (13 1)

where « 1s a corrosion addition factor whose values are defined in Table 1.3.1.
The voluntary addition, if being used, is to be clearly indicated on the drawings.

Table 1.3.1
Values of corrosion addition factor
Structural requirement Property / analysis type a

Strength assessment (S11A.3) Section properties 0.5
Buckling strength (S11A.4) SectioTl properti.es (stress determination) 0.5
Buckling capacity 1.0
. . Section properties 0.5

Hull girder ultimate strength (S11A.5) : :
Buckling / collapse capacity 0.5

1.3.2 Determination of corrosion addition

The corrosion addition for each of the two sides of a structural member, ¢, or #, is specified in
Table 1.3.2. The total corrosion addition, ¢, in mm, for both sides of the structural member is obtained by
the following formula:

tc :([cl +tc‘2)+tres (132_1)

For an internal member within a given compartment, the total corrosion addition, z. is obtained from
the following formula:
t.=(2t,,)+1,, (1.3.2-2)

The corrosion addition of a stiffener is to be determined according to the location of its connection to
the attached plating



Table 1.3.2
Corrosion addition for one side of a structural member

Compartment type One side corrosion
addition ¢.; or ¢, [mm]
Exposed to sea water 1.0
Exposed to atmosphere 1.0
Ballast water tank 1.0
Void and dry spaces 0.5
Fresh water, fuel oil and lube oil tank 0.5
Accommodation spaces 0.0
Container holds 1.0
Compartment types not mentioned above 0.5

1.3.3 Determination of net section properties

The net section modulus, moment of inertia and shear area properties of a supporting member are to
be calculated using the net dimensions of the attached plate, web and flange, as defined in Figure 1.3.3.
The net cross-sectional area, the moment of inertia about the axis parallel to the attached plate and the
associated neutral axis position are to be determined through applying a corrosion magnitude of 0.5az,
deducted from the surface of the profile cross-section.
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Fig. 1.3.3 Net sectional properties of supporting members

Bulb and similar profiles

2 LOADS
2.1 Sign convention for hull girder loads

The sign conventions of vertical bending moments and vertical shear forces at any ship transverse
section are as shown in Figure 2.1, namely:

— the vertical bending moments My and My, are positive when they induce tensile stresses in the strength
deck (hogging bending moment) and negative when they induce tensile stresses in the bottom
(sagging bending moment);

— the vertical shear forces F, F are positive in the case of downward resulting forces acting aft of the
transverse section and upward resulting forces acting forward of the transverse section under
consideration. The shear forces in the directions opposite to above are negative.

Aft Fore

Shear forces: H l I ;

Aft

Bending moments:

Fore

Fig. 2.1 Sign conventions of bending moments and shear forces
2.2 Still water bending moments and shear forces
2.2.1 General

Still water bending moments, Mg in [kNm], and still water shear forces, Fs in [kN], are to be
calculated at each section along the ship length for design loading conditions as specified in 2.2.2.



2.2.2 Design loading conditions

In general, the design cargo and ballast loading conditions, based on amount of bunker, fresh water
and stores at departure and arrival, are to be considered for the M and F calculations. Where the amount
and disposition of consumables at any intermediate stage of the voyage are considered more severe,
calculations for such intermediate conditions are to be submitted in addition to those for departure and
arrival conditions. Also, where any ballasting and/or de-ballasting is intended during voyage,
calculations of the intermediate condition just before and just after ballasting and/or de-ballasting any
ballast tank are to be submitted and where approved included in the loading manual for guidance.

The permissible vertical still water bending moments M.x and Mg, and the permissible vertical still
water shear forces Flgn. and Fisi, in seagoing conditions at any longitudinal position are to envelop:

— the maximum and minimum still water bending moments and shear forces for the seagoing loading
conditions defined in the Loading Manual;
— the maximum and minimum still water bending moments and shear forces specified by the designer.

The Loading Manual should include the relevant loading conditions, which envelop the still water

hull girder loads for seagoing conditions, including those specified in Publication No. 16/P.

2.3 Wave loads
2.3.1 Wave parameter

The wave parameter is defined as follows

22

C=1-1501- |— for L< L,y (2.3.1-1)

C=1-045 —1|  forL>L. (2.3.1-2)

where:
L,.;, — reference length, in [m], taken as:

L,=3 ISCV},I‘3 for the determination of vertical wave bending moments according to 2.3.2

L= 330C;,' for the determination of vertical wave shear forces according to 2.3.3.

2.3.2  Vertical wave bending moments

The distribution of the vertical wave induced bending moments, My in [kKNm], along the ship length is
given in Figure 2.3.2-2, where:

0.8
B
My e =+1.5 [RLCCy, [ZJ Syt tog (2.3.2-1)
B\
My _gpe =—1.5 fRL3CCW(Zj Si—sug (2.3.2-2)
where:
1z — factor related to the operational profile, to be taken as:
fr = 0.85;
Jfyi-og — mnon-linear correction for hogging, to be taken as:
SNL-tog = 0.32—3\/? , not to be taken greater than 1.1;
w
Jni-sag — mnon-linear correction for sagging, to be taken as:

10
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NL-Sag CW /CB 703

— bow flare shape coefficient, to be taken as:

oo = Apx = Ay .
020z,

— projected area in horizontal plane of uppermost deck, in [m”] including the forecastle deck, if
any, extending from 0.8L forward (see Figure 2.3.2-1). Any other structures, e.g. plated
bulwark, are to be excluded;

— waterplane area, in [mz], at draught 7, extending from 0.8L forward;

— vertical distance, in m, from the waterline at draught 7 to the uppermost deck (or forecastle
deck), measured at FE (see Figure 2.3.2-1). Any other structures, e.g. plated bulwark, are to
be excluded.
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¥ |

oA =J. i 0L | :;r

Fig. 2.3.2-1 Projected area Apy and vertical distance z,
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2.3.3 Vertical wave shear force

The distribution of the vertical wave induced shear forces, Fj in [kN], along the ship length is given

in Figure 2.3.3, where:
B 0.8
Fy i, =+52 £, ’CC,, (f) (0340731 )
B 0.8
Fore
FWHog = —5,7fRL2CCW (Ij fNL—Hog
B 0.8
»
FWSZg - _5'2fRL2CCW(Zj (0‘3 ’ 0-7fNL—Sag)
B 0.8
F Fore _ +57fRL2CCW(Z) (025 + 0.75fNL—Sag)

W Sag

) B 0.8
F,M =+4.0 £, I*CC,, (Zj
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Fig. 2.3.3 Distribution of vertical wave shear force Fj; along the ship length
2.4 Load cases

For the strength assessment, the maximum hogging and sagging load cases given in Table 2.4 are to
be checked. For each load case the still water condition at each section as defined in 2.2 is to be
combined with the wave condition as defined in 2.3, refer also to Figure 2.4.

Table 2.4
Combination of still water and wave bending moments and shear forces

Load case Bending moment Shear force
M. s M, w F S F, w
Fgmax for x <0.5L F for x <0.5L
HOggll’lg M, Smax M, WH S o
FSmin for x> 0.5L FWmin for x> 0.5L
. Fgpin for x <0.5L Fymin for x <0.5L
Sagging Mimin My
Fgpax for x> 0.5L Flynax for x> 0.5L
My wave bending moment in hogging at the cross section under consideration, to be taken as the positive

value of My as defined in Figure 2.3.2-2;
Mys:  wave bending moment in sagging at the cross section under consideration, to be taken as the negative
value of My, as defined Figure 2.3.2-2;

Fymax: Maximum value of the wave shear force at the cross section under consideration, to be taken as the
positive value of Fy as defined Figure 2.3.3;

Fymin: minimum value of the wave shear force at the cross section under consideration, to be taken as the

negative value of Fj, as defined Figure 2.3.3.

13
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Fig. 2.4 Load combination to determine the maximum hogging and sagging load cases as given in Table 2.4

-

2.5 Hull girder stress

The hull girder stresses in [N/mm’] are to be determined at the load calculation point under
consideration, for the "hogging" and "sagging" load cases defined in 2.4 as follows:

Bending stress:

O = ySMS;—”VMW(Z ~Z, )07 (2.5-1)
net
Shear stress:
T = rsEs +rwFy (2.5-2)
tnet /qV
where:
¥, yw. partial safety factors, to be taken as:
Vs = 1.0
Yw = 1.0

3 STRENGTH ASSESSMENT
3.1 General

Continuity of structure is to be maintained throughout the length of the ship. Where significant
changes in structural arrangement occur adequate transitional structure is to be provided.

3.2 Stiffners criterion

The two load cases "hogging" and "sagging" as listed in 2.4 are to be checked. The net moment of
inertia, in [m*], is not to be less than:

1, 2155M+M,|107 (3.2)

net —
3.3 Yield strength assessment
3.3.1 General acceptance criteria

The yield strength assessment is to check, for each of the load cases "hogging" and "sagging" as
defined in 2.4, that the equivalent hull girder stress o, in [N/mm?], is less than the permissible stress
Operm, 1 [N/rnmz], as follows:

14



Ocq < Operm

where:
[ 2
O, =40y +37
_ ReH
O-perm -
7172

ReH

23

7: partial safety factor for load combinations and permissible stress, to be taken as:
— 7 =1.24, for bending strength assessment according to 3.3.2,
— 7 =1.13, for shear stress assessment according to 3.3.3.

. partial safety factor for material, to be taken as y, =k

3.3.2 Bending strength assessment

The assessment of the bending stresses is to be carried out according to 3.3.1 at the following
locations of the cross section
at bottom,
— atdeck,
at top of hatch coaming,
— at any point where there is a change of steel yield strength.
The following combination of hull girder stress as defined in 2.5 is to be considered:

O = OyG

=0
3.3.3 Shear strength assessment

The assessment of shear stress is to be carried out according to 3.3.1 for all structural elements that
contribute to the shear strength capability.
The following combination of hull girder stress as defined in 2.5 is to be considered:

o,=0
4 BUCKLING STRENGTH
4.1 Application

These requirements apply to plate panels and longitudinal stiffeners subject to hull girder bending and
shear stresses.
Definitions of symbols used in the present Chapter 4 are given in Annex 2 "Buckling Capacity".

4.2 Buckling criteria

The acceptance criterion for the buckling assessment is defined as follows:

Uact S 1
where:
Nuer — - maximum utilisation factor as defined in 4.3.

4.3 Buckling utilisation factor

The utilisation factor, 7, is defined as the inverse of the stress multiplication factor at failure y., see
Figure 4.3.

1
Naer =

Failure limit states are defined in:
— Annex 2, 2 for elementary plate panels,

15



— Annex 2, 3 for overall stiffened panels,

— Annex 2, 4 for longitudinal stiffeners.

Each failure limit state is defined by an equation, and y,. is to be determined such that it satisfies the

equation.

Figure 4.3 illustrates how the stress multiplication factor at failure j., of a structural member is

determined for any combination of longitudinal and shear stress. Where:

oy, T — applied stress combination for buckling given in 4.4.1

ox, 7. — Critical buckling stresses to be obtained according to Annex 2 for the stress combination for
buckling o, and 7.

/|

T Failure limit state curve
L

Stress

¥e Tp-mmmmmmmmmmmoee Appliad T at. failure
E o T stress
=
Oy ¥e O J70,

Fig. 4.3 Example of failure limit state curve and stress multiplication factor at failure
4.4 Stress determination
4.4.1 Stress combinations for buckling assessment

The following two stress combinations are to be considered for each of the load cases "hogging" and
"sagging" as defined in 2.4. The stresses are to be derived at the load calculation points defined in 4.4.2.
a) Longitudinal stiffening arrangement

Stress combination 1 with:

Ox = OHG

o,=0

7=0.7 146

Stress combination 2 with:
o, =0.70n

0,=0

T= THG

b) Transverse stiffening arrangement

Stress combination 1 with:

0.=0
Oy = OHG
T= O.7THG

Stress combination 2 with:
o,=0

o, = 0.7op¢

T= THG

4.4.2 Load calculation points

The hull girder stresses for elementary plate panels (EPP) are to be calculated at the load calculation
points defined in Table 4.4.2.

16



Table 4.4.2
Load calculation points (LCP) coordinates for plate buckling assessment

LCP Hull girder bending stress Hull girder shear stress
coordinates Non horizontal plating ‘ Horizontal plating
x coordinate Mid-length of the EPP
Both upper and lower ends of Outboard and inboard ends of | Mid-point of EPP (point B
y coordinate the EPP (points Al and A2 in the EPP (points Al and A2 in in Figure 4.4.2)
Figure 4.4.2) Figure 4.4.2)
z coordinate Corresponding to x and y values
Considered Considered
transverse tra_msu_‘crsc
saction -,_, | section | |
b a2l lesm! _
| 1T T F
| | | .
A2 A2
sl St et L
B o ‘ 1B | B | 3
| e
AL T . — || | |
‘ | | N
' |l | |
S ——— Al PSM l41 Y
1 e ) — _,
e = >| L | |
PSM PSM € 3
Longitudinal Framing Transverse Framing

Fig. 4.4.2 LCP for plate buckling - assessment, PSM stands for primary supporting members

The hull girder stresses for longitudinal stiffeners are to be calculated at the following load calculation
point
— at the mid length of the considered stiffener;
— at the intersection point between the stiffener and its attached plate.

5 HULL GIRDER ULTIMATE STRENGTH
5.1 General

The hull girder ultimate strength is to be assessed for ships with length L equal or greater than 150m.
The acceptance criteria, given in 5.4 are applicable to intact ship structures.

The hull girder ultimate bending capacity is to be checked for the load cases "hogging" and "sagging"
as defined in 2.4.

5.2 Hull girder ultimate bending moments

The vertical hull girder bending moment, M in hogging and sagging conditions, to be considered in
the ultimate strength check is to be taken as:

M =yMg+y, My (5.2)

where:
Ms — permissible still water bending moment, in [kNm], defined in 2.4;
My — vertical wave bending moment, in [kNm], defined in 2.4;
% — partial safety factor for the still water bending moment, to be taken as:

Vs= 1.0
¥ — partial safety factor for the vertical wave bending moment, to be taken as:

yw= 1.2.

17



5.3 Hull girder ultimate bending capacity
53.1 General

The hull girder ultimate bending moment capacity, My is defined as the maximum bending moment
capacity of the hull girder beyond which the hull structure collapses.

5.3.2 Determination of hull girder ultimate bending moment capacity

The ultimate bending moment capacities of a hull girder transverse section, in hogging and sagging
conditions, are defined as the maximum values of the curve of bending moment M versus the curvature y
of the transverse section considered (Myy for hogging condition and Mys for sagging condition, see
Figure 5.3.2). The curvature y is positive for hogging condition and negative for sagging condition.

M
A . .
M Hogging condition

UH

_I F

" FH

X

Sagging condition

Fig. 5.3.2 Bending moment M versus curvature y

The hull girder ultimate bending moment capacity My is to be calculated using the incremental-
iterative method as given in 2 of Annex 3 or using an alternative method as indicated in 3 of Annex 3

5.4 Acceptance criteria

The hull girder ultimate bending capacity at any hull transverse section is to satisfy the following
criteria:

M < My (5.9)
YmYps
where:
M — vertical bending moment, in [KNm], to be obtained as specified in 5.2;
My — hull girder ultimate bending moment capacity, in [kNm], to be obtained as specified in 5.3;
ms — partial safety factor for the hull girder ultimate bending capacity, covering material, geometric
and strength prediction uncertainties, to be taken as:

ypp — partial safety factor for the hull girder ultimate bending moment capacity, covering the effect of
double bottom bending, to be taken as:
— for hogging condition ypp = 1.15;
— for sagging condition: ypg = 1.0.

For cross sections where the double bottom breadth of the inner bottom is less than that at amidships
or where the double bottom structure differs from that at amidships (e.g. engine room sections), the
factor ypp for hogging condition may be reduced based upon agreement with the PRS.
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6 ADDITIONAL REQUIREMENTS FOR LARGE CONTAINER SHIPS
6.1 General

The requirements in 6.2 and 6.3 are applicable, in addition to requirements in Chapter 3 to 5, to
container ships with a breadth B greater than 32.26 m.

6.2 Yielding and buckling assessment

Yielding and buckling assessments are to be carried out taking into consideration additional hull
girder loads (wave torsion, wave horizontal bending and static cargo torque), as well as local loads as
determined in PRS Publication No. 24/P — Strength Analysis of Container Ship Hull Structure and PRS
Rules for the Classification and Construction of Sea-going Ships Part Il — Hull — 18.4, 18.5. All in-plane
stress components (i.e. bi-axial and shear stresses) induced by hull girder loads and local loads are to be
considered.

6.3 Whipping

Hull girder ultimate strength assessment is to take into consideration the whipping contribution to the
vertical bending moment.

Wave bending moment Mw value applied in 5.2 shall be determined according to requirements
of 2.3.2 and 2.4 and next increased by 30% to take into account conservatively the whipping
contribution.

Alternatively, after special consideration, PRS may accept the increase level of Mw due to whipping
proposed by ship hull structure designer on the base of a fully documented long term analysis procedure
applied for direct calculation of the vertical bending moment with whipping effect, considering fluid-ship
hull structure interaction.
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ANNEX 1 - CALCULATION OF SHEAR FLOW

I 1T o T=T - | TSRS 21
2 Determinate SNEAI TIOW.........c.ccooiiiiiiiiiiiicicce ettt 21
3 Indeterminate SNEAI TIOW...........c.ccoviiiiiniiiiiicc ettt 22
4 Computation of SECiONAl PrOPEITIES .......c.oiviiieiiieiict ettt et ta bbb sbeereenea 23
1 GENERAL

This annex describes the procedures of direct calculation of shear flow around a ship's cross section
due to hull girder vertical shear force. The shear flow g, at each location in the cross section, is calculated
by considering the cross section is subjected to a unit vertical shear force of 1 N.

The unit shear flow per mm, ¢,, in [N/mm], is to be taken as:

4v=qp*qi
where
gp — determinate shear flow, as defined in 2;
q; — indeterminate shear flow which circulates around the closed cells, as defined in 3.

In the calculation of the unit shear flow, g,, the longitudinal stiffeners are to be taken into account.

2 DETERMINATE SHEAR FLOW

The determinate shear flow, gp, in [N/mm)] at each location in the cross section is to be obtained from
the following line integration:

qd(S):_l()%J'(Z_Zn)tnetds (2'1)
y—net ()
where:
s — coordinate value of running coordinate along the cross section, in [m];
I,.., — net moment of inertia of the cross section, in [m4];
t.w — netthickness of plating, in [mm];
z, — Z coordinate of horizontal neutral axis from baseline, in [m].

It is assumed that the cross section is composed of line segments as shown in Figure 2-1: where each
line segment has a constant plate net thickness. The determinate shear flow is obtained by the following
equation.

toerl
=——2 (z, +z, -2z )+qp, 2-2
qu 2 ‘loély_,,e, ( k i n) qDl ( )
where:
qpk> ¢pi — determinate shear flow at node & and node i respectively , in [N/mm];

[ — length of line segments, in [m];
Vi ¥i — Y coordinate of the end points k£ and i of line segment, in m, as defined in Figure 2-1;
z, zi — Z coordinate of the end points k£ and 7 of line segment, in m, as defined in Figure 2-1.

Where the cross section includes closed cells, the closed cells are to be cut with virtual slits, as shown
in Figure 2-2: in order to obtain the determinate shear flow.
These virtual slits must not be located in walls which form part of another closed cell.
Determinate shear flow at bifurcation points is to be calculated by water flow calculations, or similar, as
shown in Figure 2-2.
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Fig. 2-1 Definition of line segment
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Fig. 2-2 Placement of virtual slits and calculation of determinate shear flow at bifurcation points

3 INDETERMINATE SHEAR FLOW

The indeterminate shear flow around closed cells of a cross section is considered as a constant value
within the same closed cell. The following system of equation for determination of indeterminate shear
flows can be developed. In the equations, contour integrations of several parameters around all closed
cells are performed

1 - 1 q
—ds— —ds |=—¢ 2 ds 3-1
q[c §C Znet ; [qlm ﬁ’&m ZLnet J £’tnet ( )
where:
N, — number of common walls shared by cell ¢ and all other cells;
c&m — common wall shared by cells ¢ and m;

qi» q1n — 1ndeterminate shear flow around the closed cell ¢ and m respectively, in [N/mm)].

Under the assumption of the assembly of line segments shown in Figure 2-1 and constant plate
thickness of each line segment, the above equation can be expressed as follows:

Ne (g N, Nu (] N,
CIICZ(_J _z 9im Z(_j =_z¢j (3-2)
Jj=1 Z‘ne‘t j m=1 Jj=1 Z‘net j m Jj=1
¢, = —L(z +2z,-3z )+Lq (3-3)
’ 6'103]Y—net ¢ l ! tnet o j
where:
N. — number of line segments in cell ¢;
N,, — number of line segments on the common wall shared by cells ¢ and m;
qpi — determinate shear flow, in [N/mm)], calculated according to Annex 1, 2.
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The difference in the directions of running coordinates specified in Annex 1, 2 and in this section has

to be considered.

Y

P — - — —

Common wall
Iy
4
,I
f___"“"__‘ v Cell ¢ p
. Cellm | .
R | ———

Fig. 3 Closed cells and common wall

4 COMPUTATION OF SECTIONAL PROPERTIES

Properties of the cross section are to be obtained by the following formulae where the cross section is

assumed as the assembly of line segments

Z:\/(J’k _yi)z +(Zk _Zi)2

a,, =101t

net
Anet: z ,anet

Sy—net = a;et (Zk +Zi)

Sy—net = z Sy—net

a
: _ et (2 2
lyO—net - 3 (Zk +ZkZi +Zi )

[yO—net = zlyo—net

The height of horizontal neutral axis, z,, in m, is to be obtained as follows:

_ Sy—net
L=
A

z

net

Inertia moment about the horizontal neutral axis, in [m?], is to be obtained as follows:

2
y0—net Zy Anet

I I

y—net =

(4-1)
(4.2)

(4-3)
(4-4)
(4-5)
(4-6)

(4-7)

(4-8)

(4-9)
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ANNEX 2 - BUCKLING CAPACITY

1 Elementary Plate PANEI (EPP) ........o oottt e ae e ene e 26
Lol DEFINMIEION. ¢ttt ettt ettt b e s b et ea et e b ettt be s bt eb b et et et et e b saeeaeene 26
1.2 EPP with different thiCKNESSES .......c..coueriririririiieteeeesses ettt ettt s 26
2 BUCKIING CAPACILY OF PIALES.......c.ocvieiieiieiiieceecee ettt ettt et sb et e et teeseesse s e sbesseereas 27
2.1 PLAtE PANCL ..ceviiiiiiiciiecieee ettt e e s te e ae b e e rbeetteete e beesbeesbeertentaesbeenteerreenneernanns 27
2.2 Curved Plate PANCIS .......ccviiiiiiieiieie ettt ettt et re e ae e be b e eraeete e be et e e saeebeenreeaneereenns 32
3 Buckling capacity of overall stiffened panel ... 33
4 Buckling capacity of longitudinal STFFENErS...........ooeiiiiee s 33
4.1 SHITENETS IHMIL STATES «..eoueeutitirtirterieeieeit ettt ettt ettt et e et be bt bt eae et e b esaenbesaeebeenees 33
4.2 LAtEIAl PIESSUIE ...cveevierieriieeeeeteesteeteeseestesssesseesseesseesseasseaseesseesseesseessesssesssesseessessseensesssesseesseessesssenssenssens 33
4.3 StIfener 1dEaliZAtION. ......cccuiiiiiiiiietiee ettt ettt sttt b ettt 34
4.4 Ultimate DUCKIING CAPACILY ....c.veviieiieieteeienieiete ettt ettt et sttt et se et et e st e stesbeeseebeeneenseseneeabesaeeneenean 36
Symbols:
X axis — local axis of a rectangular buckling panel parallel to its long edge;
y axis — local axis of a rectangular buckling panel perpendicular to its long edge;
O — membrane stress applied in x direction, in [N/mm®];
o, — membrane stress applied in y direction, in [N/mm?];
7 — membrane shear stress applied in xy plane, in [N/mm®];
Oy — axial stress in the stiffener, in [N/mm?]
o — bending stress in the stiffener, in [N/mm’];
Oy — warping stress in the stiffener, in [N/mm?];
Ow, Ouy, To — critical stress, in [N/mm?®], defined in 2.1.1 for plates;
Rey s — specified minimum yield stress of the stiffener, in [N/mm?];
Ry p — specified minimum yield stress of the plate, in [N/mm?];
a — length of the longer side of the plate panel as shown in Table 2.1.4-2, in [mm];
b — length of the shorter side of the plate panel as shown in Table 2.1.4-2, in [mm];
d — length of the side parallel to the axis of the cylinder corresponding to the curved plate
panel as shown in Table 2.2, in [mm];
Ok — elastic buckling reference stress, in [N/mm?] to be taken as:
— for the application of plate limit state according to 2.1.2
2
o = 7’E 13
(=) b
— for the application of curved plate panels according to 2.2:
2
o - ©°E (t,
Frl-v )\ d
v — Poisson's ratio to be taken equal to 0.3;
t, — net thickness of plate panel, in [mm];
ty — net stiffener web thickness, in [mm];
t — net flange thickness, in [mm];
bs — breadth of the stiffener flange, in [mm)];
h, — stiffener web height, in [mm];
er — distance from attached plating to centre of flange, in [mm], to be taken as:

e = h,, for flat bar profile;
er = h,,— 0.5 t; for bulb profile;
er= h,, + 0.5 ¢, for angle and Tee profiles;
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. a
a — aspect ratio of the plate panel, to be taken as « = 3 ;

. 1-
p — coefficient taken as f§ = —W;
a
. o,
7 — edge stress ratio to be taken as y =—=;
o1
o1 — maximum stress, in [N/mm®];
lo5) — minimum stress, in [N/mm?’];
R — radius of curved plate panel, in [mm];
[ — span, in mm, of stiffener equal to the spacing between primary supporting members;
s — spacing of stiffener, in mm, to be taken as the mean spacing between the stiffeners of the

considered stiffened panel

1 ELEMENTARY PLATE PANEL (EPP)
1.1 Definition

An Elementary Plate Panel (EPP) is the unstiffened part of the plating between stiffeners and/or
primary supporting members.

All the edges of the elementary plate panel are forced to remain straight (but free to move in the in-
plane directions) due to the surrounding structure/neighbouring plates (usually longitudinal stiffened
panels in deck, bottom and inner-bottom plating, shell and longitudinal bulkheads).

1.2 EPP with different thicknesses
1.2.1 Longitudinally stiffened EPP with different thicknesses

In longitudinal stiffening arrangement, when the plate thickness varies over the width, b, in mm, of a
plate panel, the buckling capacity is calculated on an equivalent plate panel width, having a thickness
equal to the smaller plate thickness, #,. The width of this equivalent plate panel, b.,, in mm, is defined by
the following formula:

1.5
by =1 +12[;—j 1.2.1)
where:
li — width of the part of the plate panel with the smaller plate thickness, ¢, in mm, as defined in
Figure 1.2.1;
l; — width of the part of the plate panel with the greater plate thickness, #,, in mm, as defined in
Figure 1.2.1.

| b

= >

Fig. 1.2.1 Plate thickness change over the width
1.2.2 Transversally stiffened EPP with different thicknesses

In transverse stiffening arrangement, when an EPP is made of different thicknesses, the buckling
check of the plate and stiffeners is to be made for each thickness considered constant on the EPP.
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2 BUCKLING CAPACITY OF PLATES
2.1 Plate panel
2.1.1 Plate limit state

The plate limit state is based on the following interaction formulae:
a) longitudinal stiffening arrangement:

2/ﬂ2.25 2/ﬁ2.25
O-CX TC

b) Transverse stiffening arrangement

2/ﬁ2.25 2/,62'25
7.9, {u} .
O T,

where:

(2.1.1-1)

(2.1.1-2)

0., 0, — applied normal stress to the plate panel in [N/mm?’], as defined in 4.4, at load calculation points

of the considered elementary plate panel;

T — applied shear stress to the plate panel, in [N/mm?], as defined in 4.4, at load calculation points
of the considered elementary plate panel;

0. — ultimate buckling stress in [N/mm?’] in direction parallel to the longer edge of the buckling
panel as defined in 2.1.3;

o, — ultimate buckling stress in [N/mm®] in direction parallel to the shorter edge of the buckling
panel as defined in 2.1.3;

T — ultimate buckling shear stress, in [N/mm?] as defined in 2.1.3;

B,  — plate slenderness parameter taken as:

ﬂpzﬂ ReHiP )
t,V E

2.1.2 Reference degree of slenderness

The reference degree of slenderness is to be taken as:

/1 — ReH _P
Koy
where:
K — buckling factor, as defined in Table 2.1.4-2 and Table 2.2.

2.1.3 Ultimate buckling stresses

The ultimate buckling stress of plate panels, in [N/mm?], is to be taken as:

O-cx = CxReHiP

ch = CyReHiP

The ultimate buckling stress of plate panels subject to shear, in [N/mm?], is to be taken as:

ReH P
’Z' X = CT —_—
c \/5
where:

C,, C,, C.—reduction factors, as defined in Table 2.1.4-2.

(2.1.2)

(2.1.3-1)
(2.1.3-2)

(2.1.3-3)
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The boundary conditions for plates are to be considered as simply supported (see cases 1, 2 and 15 of
Table 2.1.4-2). If the boundary conditions differ significantly from simple support, a more appropriate
boundary condition can be applied according to the different cases of Table 2.1.4-2 subject to the
agreement of PRS.

2.1.4 Correction Factor F,,,

The correction factor F},,, depending on the edge stiffener types on the longer side of the buckling
panel is defined in Table 2.1.4-1. An average value of F},,, is to be used for plate panels having different
edge stiffeners. For stiffener types other than those mentioned in Table 2.1.4-1, the value of ¢ is to be
agreed by PRS. In such a case, value of ¢ higher than those mentioned in Table 2.1.4-1 can be used,
provided it is verified by buckling strength check of panel using non-linear FE analysis and deemed
appropriate by PRS.

Table 2.1.4-1
Correction Factor Fi,,,
Structural element types Fiong c
Unstiffened Panel 1.0 N/A
Stiffened Stiffener not fixed at both ends 1.0 N/A
Panel Stiffener fixed at Flat bar (" " 0.10
lonr=C+1 for 2+ >1
both ends Bulb profile ¢ t, 0.30
Angle profile ; 3 ; 0.40
F_o=c | +1 for 2<1
T profile long (t ] t 0.30
P P
Girder of high 1.4 N/A
rigidity (e.q. bottom
transverse)
M4 is the net web thickness, in mm, without the correction defined in 4.3.5
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Table 2.1.4-2

Buckling factor and reduction factor for plane plate panels

Case Stress | Aspect Buckling factor K Reduction factor C
ratio i | ratio o
E . i 2.4 C.=1 for A< A,
AN Ty szc(/l1 szzj for 2> 4,
1
o s - where:
f— / A
o o / k| A | K =F,,[1.63-y(626-10y)] —(125-0.12/)<1.25
vel,_  |va é
T 2 ﬂ’c =3 < 1 l_w
| K= [5.97501-y | 2 c
2 2
2(“1) CEWJ
K =
’ 1+l//+(l W where:
o 100 | o2 +6. 9f1 c=(1.25-0.12p)<1.25
/i\ a<6 f1=(1—l//)(0!—1) R=ﬂ.(l—ﬂ/c) for A< A,
— > 6 f_06( )[ _4j R=0.22 for A> 1,
e a F:(l—(—ol;—lJ//tzjcl >0
0. 3
but not greater than 14. /137 205 for 1< ﬂ; <3
2
| ‘ 200(1+ﬁ)z =(1—l]zo
o TTT vo, Y (1= £ 1100 +2.4582 +6.9 1, +231,) a
f 21
to b H=A-———_—>R
T 1 T+\/T2—4]
of | | | [ [Tve = f1:0.6(l+14ﬂJ c(
< B 14 1
a - b but not greater than 14.5 — 0.354> T= ﬂ’+ﬁ+§
3 3
A f=f=0
S Vi 1
I
e~
 F | L2=A70
Vi 1 2
$ 3| fi=g o) op1f 5]
= B 3
& v | h=/=0
— 3
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Fora>1.5
4
fi=2 l—16(1—9) [l—lJ
B 3)\B
fo=3p8-2
s
| fi=
\f Fora<1.5
4 1.5 1
S -y B
|
- fzzl/ffl—16f42)
l-«a
f3=0
fi=1.5-Min(1.5;a))
s | £=0
|
= f2:1+2.31(ﬁ—1)—48(§—ﬂjf42
\%
3 fi a-1
Vi =3 1y 4= -
S f=34(p 1.81 1.31]
|
= | fi=0.5-Min(1.5;))
S
2
K,=5972 P
—J3
o
3 where:
J 1+3z//
o)
fs= 1(1+Max(
< 2
3 ¢ | g _4l0425+1/a”)
o “ A * 3y +1
a U | K, =40.425+1/a® f1+y)-Sp(1-3.42y)
A
< C,.=1 for 1<0.7
! T ! for 1>0.7
zl’.q'_o "o‘ w l X: 2 or > 0.
= b N 04254_%)3_‘// A +0.
o R — = Al a
3 R —
a
5
% 3
E ) 3
S —
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2 1
T | K,=—+0.56+0.130°
3 o
6 (e
' A _40.425+07)
N Y By +1)a?
n 1 1
N K= 40.425 + a, )(1+y/)?—5t//(1—3.42w)?
A
(=]
7
Cy =1 for 1<0.7
| 1
Al 3-y C =—— for1>0.7
> Ky=(0-425+“2)(2 2) Y4051
Al a
0.56 0.13
K =1+ +
y o2 P
= N
9
= =
= " = K, =6.97
= -.'- v
g —
10
g C,=1 for 1<0.83
s 2.07 0.67 _113 1022
t, Jb Ky:4+—a2 + a4 Cx_113|:z_ 22 i|
ol [IIL[T] for 1> 0.83
T
11 az4 | K. =4
!x—_ "J‘i ) a<4 4
= I =Is K, =4+2.74(4_—“j
R 3
12 - Fora<2:
a_,-” :Fl g, G=Co
' — Fora>2
t b 1
9, | |r RS w-o, K, = K, determined as per case 2 C, = (1.06+—10a jCyz
e where:
C,» = C, as determined as per case 2
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I3 az4 | K, =697 C, =1 for 2<0.83
o, a,
- L a<4
= SR 4-a) C,=1.13 1—0'222
= — K. =697+3.1 5 1 1
R for 2> 0.83
14
ST C, =1 for 1<0.83
| 697 3.1[4-1/a]
: oy Ky=—2+—2[ } C, =1.13[l—0'222j
ol LLL 111} a o 3 )
L J for 1>0.83
a
15
T — " 4
J b r b KT=\/§[5.34+—2:|
v o
a—— a -
16
T e . al
4 7.15
vl |~ ]b K, =x/§{5.34+Max{?; peE: }} C,=1for 1<0.84
a A
17
o
R K=K
! f K’ = K according to case 15
e ! _ . .
4!; J O r b r opemncgl reductlorall factor take; as ;
' ' ty r =[ ——”j(l——bj with =+ < 0.7 and —2<0.7
— — a b a b
-i—a-—-__;-.
K. =3(0.6+4/a)
C,=1for 1<0.84
C. =—0'84 for 1> 0.84
A
K.=8

Edge boundary conditions

———————————— Plate edge free

Plate edge simply supported
Plate edge clamped

Notes:

1) Cases listed are general cases. Each stress component (ox, gy) is to be understood in local coordinates.

2.2 Curved plate panels

This requirement for curved plate limit state is applicable when R/t, < 2500. Otherwise, the
requirement for plate limit state given in 2.1.1 is applicable.
The curved plate limit state is based on the following interaction formula:
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1.25 2
[ /i ] +( 73 J 1o 2-2)

CaxReH P Cz‘ ReH P

where:

Oux — applied axial stress to the cylinder corresponding to the curved plate panel, in [N/mm*]. In
case of tensile axial stresses, g, = 0;

C., C; — Buckling reduction factor of the curved plate panel, as defined in Table 2.2.

The stress multiplier factor y. of the curved plate panel needs not be taken less than the stress
multiplier factor y. for the expanded plane panel according to 2.1.1

Table 2.2
Buckling Factor and reduction factor for curved plate panel with R/, < 2500
Case Aspect ratio Buckling factor K Reduction factor C
1 d R For general application:
— =05 |— 2 d’ Coo=1 for 1<025
~"1.4 R t K=1+— ax or A= 0.
r 3 Rt, Cur=1.233-0.9332 for 0.25 <A< 1
Cu=03/2 for 1<1<1.5
d R Coe=02/2 for 1>15
—>0.5 |—
R t,

K =067 d? 3 d |t S04 d? | For curved single fields, e.g. bilge
-V R _E | Rt | strake, which are bounded by plane

panels:
C,=0.65/4<1.0

0.67d> C.=1 for 1<0.4
K= ﬁ 28'3+W C,=1.274-0.6861 for 0.4 <1<1.2
’ C,=0.65/2% for 1> 1.2

Explanations for boundary conditions:

—— Plate edge simply supported.

3 BUCKLING CAPACITY OF OVERALL STIFFENED PANEL

The elastic stiffened panel limit state is based on the following interaction formula:

—==1 3)
Cr

where P, and cyare defined in 4.4.3.
4 BUCKLING CAPACITY OF LONGITUDINAL STIFFENERS
4.1 Stiffeners limit states

The buckling capacity of longitudinal stiffeners is to be checked for the following limit states:
— stiffener induced failure (S7),
— associated plate induced failure (PI).

4.2 Lateral pressure

The lateral pressure is to be considered as constant in the buckling strength assessment of longitudinal
stiffeners.
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4.3 Stiffener idealization
4.3.1 Effective length of the stiffener /4

The effective length of the stiffener /.4 in mm, is to be taken equal to:
/
Ly = Nl

ly=0.751 for stiffener simply supported at one end and fixed at the other;

for stiffener fixed at both ends;

ly=1 for stiffener simply supported at both ends.

4.3.2 Effective width of the attached plating b,41

The effective width of the attached plating of a stiffener b4, in mm, without the shear lag effect is to
be taken equal to:

C.b+C._b
b =~ %272 5 X272 (4.3.2)

where:

C,1, Co— reduction factor defined in Table 2.1.4-2 calculated for the EPP1 and EPP2 on each side of
the considered stiffener according to case 1

by, b, — width of plate panel on each side of the considered stiffener, in [mm].

4.3.3 Effective width of attached plating b

The effective width of attached plating of stiffeners, b4 in mm, is to be taken as:

by =min(by,, 7,5) (4.3.3)

where:
xs — effective width coefficient to be taken as:

1.12 L
: of

14— s

1.6
)

— ¥, = min

! !
— £,=0407-L for <L <]
N N

4.3.4 Net thickness of attached plating ¢,

The net thickness of plate #,, in [mm], is to be taken as the mean thickness of the two attached plating
panels.

435 Effective web thickness of flat bar

For accounting the decrease of stiffness due to local lateral deformation, the effective web thickness
of flat bar stiffener, in mm, is to be used for the calculation of the net sectional area, A4, the net section
modulus, Z, and the moment of inertia, /, of the stiffener and is taken as:

2 2 b
e 1= 2P Y D (4.3.5)
w_red w 3 s s

34



4.3.6 Net section modulus Z of a stiffener

The net section modulus Z of a stiffener, in [cm’], including effective width of plating bey 1s to be
taken equal to:
— the section modulus calculated at the top of stiffener flange for stiffener induced failure (S7),
— the section modulus calculated at the attached plating for plate induced failure (PI).

4.3.7 Net moment of inertia I of a stiffener

The net moment of inertia 7, in [cm*], of a stiffener including effective width of attached plating beyis
to comply with the following requirement:

3

> 12.11704 (4.3.7)

st

4.3.8 Idealisation of bulb profile

Bulb profiles may be considered as equivalent angle profiles. The net dimensions of the equivalent
built-up section are to be obtained, in mm, from the following formulae:

hwzh;—&+2 (4.3.8-1)
9.2
b, = a(t' +h—""—2] (4.3.8-2)
4 Y67 -
hl
t,=—2— 4.3.8-3
7792 ( )
t,=t, (4.3.8-4)
where:
h!,, t,, — net height and thickness of a bulb section, in mm, as shown in Figure 4.3.8;
a — coefficient equal to:
r\2
o =1.1+M for A, <120
3000
a=1.0 for A/, >120
«— 2 >

- ’

w w < h

Y
A
Y

w

Bulb Equivalent angle

\ Y
T ¢ ) s

Fig. 4.3.8 Idealisation of bulb stiffener
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4.4 Ultimate buckling capacity
4.4.1 Longitudinal stiffener limit state

When o, + o5, + 0,, >0, the ultimate buckling capacity for stiffeners is to be checked according to the
following interaction formula:

]/CO'a'f‘O'b‘i‘UW:

1 4.4.1
» (4.4.1)
where:
o, — effective axial stress, in [N/mmz], at mid-span of the stiffener, defined in 4.4.2;
o, — bending stress in the stiffener, in [N/mmz], defined in 4.4.3;
o, — stress due to torsional deformation, in [N/mmz], defined in 4.4.4;

Rey — Specified minimum yield stress of the material, in [N/mm®]:
— R.y= Ry s for stiffener induced failure (SI);
— R.y= Ry p for plate induced failure (PI).

4.4.2 Effective axial stress g,

The effective axial stress o,, in [N/mm?] at mid-span of the stiffener, acting on the stiffener with its
attached plating is to be taken equal to:

st, + A
c,=0,——— (4.4.2)
bq[]'lt »t A,
where:
0. — nominal axial stress, in [N/mm’], acting on the stiffener with its attached plating, calculated
according to S11A. 4.4.1 a) at load calculation point of the stiffener;
A, — netsectional area, in [mm®], of the considered stiffener.

4.4.3 Bending stress o}

The bending stress in the stiffener o, in [N/mm?], is to be taken equal to

o, = Mo+ M, (4.4.3)
VA
where:
M; — bending moment, in [N/mm?], due to the lateral load P:
P, | ,
M, =C, 710 for continuous stiffener;
P
M, =C,~——10"" for sniped stiffener;
P — lateral load, in [KN/m?], to be taken equal to the static pressure at the load calculation point of the
stiffener;
C; — pressure coefficient:
C;=Cg for stiffener induced failure (S1);
C;=Cp; for plate induced failure (P/);
Cp; — plate induced failure pressure coefficient:
Cp;=1  ifthe lateral pressure is applied on the side opposite to the stiffener;
Cp;=—1 ifthe lateral pressure is applied on the same side as the stiffener;
Cs; — stiffener induced failure pressure coefficient:
Cs;=—-1 if the lateral pressure is applied on the side opposite to the stiffener;
Cs=1 if the lateral pressure is applied on the same side as the stiffener;
M, — bending moment, in [Nm], due to the lateral deformation w of stiffener:
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My =F,| 2| withe,— P> 0;
c,—P,

Fr — 1ideal elastic buckling force of the stiffener, in [N];

P,

2
F, = Gj EI10*

— nominal lateral load, in [N/mm?], acting on the stiffener due to stresses o, and 1, in the attached

plating in way of the stiffener mid span:

2
t
, :_p[%(gj fzj
S

o, = ]/CO'X[l + A4, ] but not less than 0

Tl:{}/c

t

T

2 2
a

-1, \/ReH PE(ﬁJrﬂ)} >0 but not less than 0
- s

my,m, —coefficients taken equal to:

G

- my =147, my, =049 for a>2;

— m; =1.96, m, =0.37 for a <2;

deformation of stiffener, in mm, taken equal to:

w=wp t+ wi;

assumed imperfection, in mm, taken equal to:

— w=110"in general;

— Wy =— w,, for stiffeners sniped at both ends, considering stiffener induced failure (S7);

—  Wo = Wy, for stiffeners sniped at both ends, considering plate induced failure (PI);

distance, in mm, from the mid-point of attached plating to the neutral axis of the stiffener
calculated with the effective width of the attached plating b.y;

deformation of stiffener at midpoint of stiffener span due to lateral load P, in [mm]. In case of
uniformly distributed load, w is to be taken as:

Pt

w, =C,——10"" in general;
384E1
s\pfst® ., , _

w, =C,———10"" for stiffener sniped at both ends;
384E1

elastic support provided by the stiffener, in [N/mm?®], to be taken equal to:

2
c; :FE(%J (1+cp);

coefficient to be taken as:

|
T 0o 12/10° ;
1+'( —1]

3
c st

xa P

coefficient to be taken as:

2
= (L+%j for /> 2s;

2s

P 2
Coy = (1 + (L) j for [ < 2s.
} 2s

xa
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4.4.4 Stress due to torsional deformation o,,

The stress due to torsional deformation g, in [N/mm?], is to be taken equal to:

2
t,
o,=Ey, L4 h, @, z ;—1 for stiffener induced failure (S/) (4.4.4-1)
2 / - 0.4R,;;_
Ofr
o, = 0 for plate induced failure (P/) (4.4.4-2)
where:
%, — distance, in [mm], from centroid of stiffener cross-section to the free edge of stiffener flange, to
be taken as:
V= %W for flat bar;
hyty +1t b7
Yw=b, Y for angle and bulb profiles;

bf
Yy = 7 for Tee profile;

)

D, =—107;
’ hw
ogr — reference stress for torsional buckling, in [N/mm?]:
2
opr = 2| Lo 102 103851, |
I\ 1
Ip  — net polar moment of inertia of the stiffener about point C as shown in Figure 4.4.4, as defined in
Table 4.4.4, in [cm®];
Iy — net St. Venant's moment of inertia of the stiffener, as defined in Table 4.4.4, in [cm4];
I, — netsectional moment of inertia of the stiffener about point C as shown in Figure 4.4.4, as defined
in Table 4.4.4, in [cm"];
¢ — degree of fixation

2
o
T
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Table4.4.4
Moments of inertia

Flat Bars Bulb, angle and Tee profiles
Ip e, A, (e, —0.5t, F o2 ho-
3.10% 3 tases
Ir htl t e, —0.5¢, ) bt t
Tod (1—0-63—W e, =0st ) 4f)tw 1-0.63—"— |+ 2|1 0.63-L
3-10 h,, 3-10 e, —0.5¢, ] 310 b,
Lo ne Asehr (A, +2.64, or bulb and anele orofil
N 16 - - Or bulb and angle proI1ies
36-10° 12:10° | A, +4, gep
bt e
f'—fj; for Tee profiles
12-10
A, — net web area, in [mm®]
A; — net flange area, in [mm’]
b b, b,
. ™ | )
— 4 ] i
1 /.-/ ] [
h, rn—l- b— P & rLl-- - h, h,
/ - C L & ¢ &+ ¢ ! \ . ¢
rﬂ_'ﬁ‘“ fr J[ f[ 1 1 T

Fig. 4.4.4 Stiffener cross sections



ANNEX 3 - HULL GIRDER ULTIMATE BENDING CAPACITY
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Symbols:

Lyner — net moment of inertia, in [m4], of the hull transverse section around its horizontal neutral

axis;

Zpnets Zpnee — Section moduli, in [m3 ], at bottom and deck, respectively;

Ren s — minimum yield stress, in [N/rnmz], of the material of the considered stiffener;

Ren p — minimum yield stress, in [N/mm?], of the material of the considered plate;

Ay pet — net sectional area, in [cm’], of stiffener, without attached plating;

Apoper — net sectional area, in [cm’], of attached plating.

1 GENERAL ASSUMPTIONS

1.1 The method for calculating the ultimate hull girder capacity is to identify the critical failure modes
of all main longitudinal structural elements:

1.2 Structures compressed beyond their buckling limit have reduced load carrying capacity. All
relevant failure modes for individual structural elements, such as plate buckling, torsional stiffener
buckling, stiffener web buckling, lateral or global stiffener buckling and their interactions, are to be
considered in order to identify the weakest inter-frame failure mode.

2 INCREMENTAL-ITERATIVE METHOD

2.1 Assumptions

In applying the incremental-iterative method, the following assumptions are generally to be made:

— the ultimate strength is calculated at hull transverse sections between two adjacent transverse webs;

— the hull girder transverse section remains plane during each curvature increment;

— the hull material has an elasto-plastic behaviour;

— the hull girder transverse section is divided into a set of elements, see 2.2.2, which are considered to
act independently.

According to the iterative procedure, the bending moment M; acting on the transverse section at each
curvature value y; is obtained by summing the contribution given by the stress o acting on each element.
The stress o corresponding to the element strain, ¢ is to be obtained for each curvature increment from
the non-linear load-end shortening curves o-¢ of the element.

These curves are to be calculated, for the failure mechanisms of the element, from the formulae
specified in 2.3. The stress o is selected as the lowest among the values obtained from each of the
considered load-end shortening curves o-¢.

The procedure is to be repeated until the value of the imposed curvature reaches the value yz in [m™],
in hogging and sagging condition, obtained from the following formula:

M W
xr =10.003 ¥ 2.1
y—net
where:
M, — lesser of the values My, and My,, in [kKNm];
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MYI = 103 ReHZB—net 5
MYZ = 103 ReHZD—net

If the value yr is not sufficient to evaluate the peaks of the curve M., the procedure is to be repeated
until the value of the imposed curvature permits the calculation of the maximum bending moments of the
curve.

2.2 Procedure
2.2.1 General

The curve M _, is to be obtained by means of an incremental-iterative approach, summarised in the
flow chart in Figure 2.2.1.

In this procedure, the ultimate hull girder bending moment capacity, My is defined as the peak value
of the curve with vertical bending moment M versus the curvature y of the ship cross section as shown in
Figure 2.2.1. The curve is to be obtained through an incremental-iterative approach.

Each step of the incremental procedure is represented by the calculation of the bending moment M;
which acts on the hull transverse section as the effect of an imposed curvature y;.

For each step, the value y; is to be obtained by summing an increment of curvature, Ay to the value
relevant to the previous step y; 1. This increment of curvature corresponds to an increment of the rotation
angle of the hull girder transverse section around its horizontal neutral axis.

This rotation increment induces axial strains ¢ in each hull structural element, whose value depends
on the position of the element. In hogging condition, the structural elements above the neutral axis are
lengthened, while the elements below the neutral axis are shortened, and vice-versa in sagging condition.

The stress ¢ induced in each structural element by the strain ¢ is to be obtained from the load-end
shortening curve o-¢ of the element, which takes into account the behaviour of the element in the non-
linear elasto-plastic domain.

The distribution of the stresses induced in all the elements composing the hull transverse section
determines, for each step, a variation of the neutral axis position due to the nonlinear o-¢, relationship.
The new position of the neutral axis relevant to the step considered is to be obtained by means of an
iterative process, imposing the equilibrium among the stresses acting in all the hull elements on the
transverse section.

Once the position of the neutral axis is known and the relevant element stress distribution in the
section is obtained, the bending moment of the section M; around the new position of the neutral axis,
which corresponds to the curvature y; imposed in the step considered, is to be obtained by summing the
contribution given by each element stress.

The main steps of the incremental-iterative approach described above are summarised as follows (see
also Figure 2.2.1):

a) Step 1: Divide the transverse section of hull into stiffened plate elements;

b) Step 2: Define stress-strain relationships for all elements as shown in Table 2.3.1;

c¢) Step 3: Initialise curvature y; and neutral axis for the first incremental step with the value of
incremental curvature (i.e. curvature that induces a stress equal to 1% of yield strength in
strength deck) as:
n=A7Ay= O.OIRLH;

E z,-z,
where:
zp — Z coordinate, in m, of strength deck at side;
z, — Z coordinate, in m, of horizontal neutral axis of the hull transverse section with
respect to the reference coordinate system defined in S11A.1.2.3
d) Step 4: Calculate for each element the corresponding strain, & = y(z, —z,)and the corresponding

stress o;;
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e) StepS5:

f) Step 6:

g) Step7:

42

Determine the neutral axis zy4 ., at each incremental step by establishing force equilibrium
over the whole transverse section as:

Z A_,.,.0= Z A;_,,0; (i-th element is under compression, j-th element under tension);

Calculate the corresponding moment by summing the contributions of all elements as;

MU = Zo-UiAi—net (Zi _ZNAicurX

Compare the moment in the current incremental step with the moment in the previous
incremental step. If the slope in M., relationship is less than a negative fixed value,

terminate the process and define the peak value M. Otherwise, increase the curvature by the
amount of Ay and go to Step 4.




Kia =

Start

¥

First step
Y1 =0

Y

Calculation of the position of the neutral axis N, =0

Y

Increment of the curvature

XLi

Y

= Ao AY
¥

Calculation of the strain € induced on

> each structural element by the curvature y;
for the neutral axis position N,

Y

For each structural element; calculation of
the stress o relevant to the strain ¢

¥

Calculation of the new position of the neutral

= axis N, imposing the equilibrium
on the stress resultant F

d,, 0, = specified tolerance on zero value

Check on the position
of the neutral axis
IN:’ Ni—ll < 62

No

Yes

Calculation of the bending moment
M. relevant to the curvature y, summing the
contribution of each structural element stress

No

Yes

End

Fig. 2.2.1 Flow chart of the procedure for the evaluation of the curve M _,

43



2.2.2  Modelling of the hull girder cross section

Hull girder transverse sections are to be considered as being constituted by the members contributing
to the hull girder ultimate strength.

Sniped stiffeners are also to be modelled, taking account that they do not contribute to the hull girder
strength.

The structural members are categorised into a stiffener element, a stiffened plate element or a hard
corner element.

The plate panel including web plate of girder or side stringer is idealised into a stiffened plate
element, an attached plate of a stiffener element or a hard corner element.

The plate panel is categorised into the following two kinds:
— longitudinally stiffened panel of which the longer side is in ship's longitudinal direction, and
— transversely stiffened panel of which the longer side is in the perpendicular direction to ship's

longitudinal direction.

a) Hard corner element:

Hard corner elements are sturdier elements composing the hull girder transverse section, which
collapse mainly according to an elasto-plastic mode of failure (material yielding); they are generally
constituted by two plates not lying in the same plane.

The extent of a hard corner element from the point of intersection of the plates is taken equal to
20¢,; on a transversely stiffened panel and to 0.5 s on a longitudinally stiffened panel, see Figure
2.2.2-1

where:
t, — netthickness of the plate, in [mm];
s — spacing of the adjacent longitudinal stiffener, in [m].

Bilge, sheer strake-deck stringer elements, girder-deck connections and face plate-web
connections on large girders are typical hard corners

b) Stiffener element:

The stiffener constitutes a stiffener element together with the attached plate.

The attached plate width is in principle:

— equal to the mean spacing of the stiffener when the panels on both sides of the stiffener are
longitudinally stiffened, or

— equal to the width of the longitudinally stiffened panel when the panel on one side of the stiffener
is longitudinally stiffened and the other panel is of the transversely stiffened, see Figure 2.2.2-1.

c) Stiffened plate element:

The plate between stiffener elements, between a stiffener element and a hard corner element or
between hard corner elements is to be treated as a stiffened plate element, see Figure 2.2.2-1.

The typical examples of modelling of hull girder section are illustrated in Figure 2.2.2-2.
Notwithstanding the foregoing principle, these figures are to be applied to the modelling in the
vicinity of upper deck, sheer strake and hatch coaming.

s, =min(20¢, _,5./2)

Sz = (5, % 5,)/2 1= S~ 5 - §5/2
T A SETE Y WL
o s, i S o 5, sy
|
(Long. Stiff.) (Transv. Stiff.) (Long. Stiff.) (Transv. Stiff.) (Long. Stiff,)

' i+ Stiffener element

== Stiffened plate element

mmmmn  Hard corner element
Fig. 2.2.2-1 Extension of the breadth of the attached plating and hard corner element

44



T* Stiffener element
ooam  Stiffened plate element
mmm Hard corner element

o |
- A ) ra *

5 §2§2 s s

Fig. 2.2.2-2 Examples of the configuration of stiffened plate elements, stiffener
elements and hard corner elements on a hull section

— In case of the knuckle point as shown in Figure 2.2.2-3, the plating area adjacent to knuckles in the
plating with an angle greater than 30 degrees is defined as a hard corner. The extent of one side of the
corner is taken equal to 20z, on transversely framed panels and to 0.5s on longitudinally framed
panels from the knuckle point.

— Where the plate members are stiffened by non-continuous longitudinal stiffeners, the non- continuous
stiffeners are considered only as dividing a plate into various elementary plate panels.

— Where the opening is provided in the stiffened plate element, the openings are to be considered in
accordance with the requirements of the Classification Society.

— Where attached plating is made of steels having different thicknesses and/or yield stresses, an average
thickness and/or average yield stress obtained from the following formula are to be used for the
calculation.

4 Sl + t2—nets2

— 1—net
net

(2.2.2-1)
S

R _ ReH_Pltl—net‘Sl + ReH_PZtZ—netSZ
eH P — f

(2.2.2-2)
S

net

where Rex pi, Reri 2, tisners tr-nesS1, S2 and are shown in Figure 2.2.2-4.
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Knuckle pdint

Fig. 2.2.2-3 Plating with knuckle point

—a S -
T _
S, » S, -
[ -
tl-néO t2-n50
R R

eHpl

eHp2

Fig. 2.2.2-4 Element with different thickness and yield strength

2.3 Load-end shortening curves

2.3.1 Stiffened plate element and stiffener element

Stiffened plate element and stiffener element composing the hull girder transverse sections may

collapse following one of the modes of failure specified in Table 2.3.1

— Where the plate members are stiffened by non-continuous longitudinal stiffeners, the stress of the
element is to be obtained in accordance with 2.3.2 to 2.3.7, taking into account the non-continuous

longitudinal stiffener.

In calculating the total forces for checking the hull girder ultimate strength, the area of non-

continuous longitudinal stiffener is to be assumed as zero.

— Where the opening is provided in the stiffened plate element, the considered area of the stiffened plate
element is to be obtained by deducting the opening area from the plating in calculating the total forces

for checking the hull girder ultimate strength.

— For stiffened plate element, the effective width of plate for the load shortening portion of the stress-
strain curve is to be taken as full plate width, i.e. to the intersection of other plate or longitudinal
stiffener - neither from the end of the hard corner element nor from the attached plating of stiffener
element, if any. In calculating the total forces for checking the hull girder ultimate strength, the area
of the stiffened plate element is to be taken between the hard corner element and the stiffener element

or between the hard corner elements, as applicable.

Table 2.3.1 Modes of failure of stiffened plate element and stiffener element

Element Mode of failure Curve o-¢defined in
Lengthened stiffened plate element Elasto-plastic collapse 232
or stiffener element
Shortened stiffener element Beam column buckling 2.3.3,
Torsional buckling 234,
Web local buckling of flanged profiles 2.3.5,
Web local buckling of flat bars 2.3.6
Shortened stiffened plate element Plate buckling 2.3.7
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2.3.2 Elasto-plastic collapse of structural elements (Hard corner element)

The equation describing the load-end shortening curve o-¢ the elasto-plastic collapse of structural
elements composing the hull girder transverse section is to be obtained from the following formula.

c=®R,, (2.3.2)

where:
Res— equivalent minimum yield stress, in [N/mm’], of the considered element, obtained by the
following formula:

R _ ReHiPAp—net + ReHiSAs—net .
eHA — B
Ap—net + As—net
® - edge function, equal to:

O =-1 for e<-1;
O=¢ for -1<¢g<1;
Od=1 for e>1;

¢ — Relative strain, equal to:
£
e=-L;
&y
g — element strain
& — strain at yield stress in the element, equal to:
— ReHA
" E

2.3.3 Beam column buckling

The positive strain portion of the average stress - average strain curve ocg; . based on beam column
buckling of plate-stiffener combinations is described according to the following:

A + A4

s—net pE —net
Ocp =901 ———————— (2.3.3)
As—net + Ap—net
where:
()] — edge function, as defined in 2.3.2;
ocl — critical stress, in [N/mmz], equal to:
o R
oo =—LL for o, <—4E¢
R, € R
oo =Ryl 1-—42= | for o, >—4L¢
O 2
R.zp — equivalent minimum yield stress, in [N/rnmz], of the considered element, obtained by the
following formula:
R s = RerPApEI—netlpE + ReHiSAs—netZsE .
e. b
ApEI—netlpE + As—netlsE
Apprnee — effective area, in [crnz], equal to:
ApEl—net = 1ObEltnet;
Lok — distance, in [mm], measured from the neutral axis of the stiffener with attached plate of width
bg to the bottom of the attached plate;
L — distance, in [mm], measured from the neutral axis of the stiffener with attached plate of width
bg to the top of the stiffener;
& — relative strain, as defined in 2.3.2;
OF1 — Euler column buckling stress, in [N/mm®], equal to
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/

op =m E—L 107
E—net
Iz, — net moment of inertia of stiffeners, in [cm4], with attached plate of width bg;;
Apns — netarea,in [cmz], of stiffeners with attached plating of width bg;
b — effective width corrected for relative strain, in m, of the attached plating, equal to:
by =—— for fz> 1.0
B

bEl =S fOI'ﬂES 1.0

_103 1}

Appnee — netarea, in [cmz], of attached plating of width b, equal to:
ApE—net = IObEtnet 5
bg — effective width, in m, of the attached plating, equal to:
by =(2'25 L. 25]s for fr>1.25
By B
be=s for Bz <1

2.3.4 Torsional buckling

The load-end shortening curve ocg,.. for the flexural-torsional buckling of stiffeners composing the
hull girder transverse section is to be obtained according to the following formula:

v net9C2 + Ap net9cp
O rp= 234
e ¢ As—net + Ap—net ( )
where:
() — edge function, as defined in 2.3.2;
oo — critical stress, in [N/mm®] equal to:
R
O oy =2E2 for o, <—45¢
£ 2
R £ R
Oy =R, o 1-—H2 for o,,>—2Sg
- 40, 2
& — relative strain, as defined in 2.3.2;
Om — Euler column buckling stress, in [N/mmz] taken as oz defined in Annex 2 4.4.4;
ocp — buckling stress of the attached plating, in [N/mm?], equal to:
225 1.25
= -——|R for fz>1.25
CP eH P
[ P ﬂl% J -
ocr = Rep p for fr<1.25
D — coefficient, as defined in 2.3.3.

2.3.5 Web local buckling of stiffeners made of flanged profiles

The load-end shortening curve ocgs.. for the web local buckling of flanged stiffeners composing the
hull girder transverse section is to be obtained from the following formula:

C o= 10 b Z‘netReH P + (hwetw net + bftf—net )ReH7S *
CR3™ 3
1075, + hot, e +bftf—net
where:
) — edge function, as defined in 2.3.2;
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bg — effective width, in [m], of the attached plating, as defined in 2.3.3;

Doe — effective height, in mm, of the web, equal to:
ho= (ﬁ_ 125 Jhw for fip > 1.25;
Be  PBg
hye = hyy for fr < 1.25;
ﬂw - ﬂw = hw gReH_S
tw—net E
& — relative strain, as defined in 2.3.2.

2.3.6  Web local buckling of stiffeners made of flat bars

The load-end shortening curve ocgs.. for the web local buckling of flat bar stiffeners composing the
hull girder transverse section is to be obtained from the following formula:

Ay eOcp + Ay et Oca

Oers = (2.3.6)
Ap—net + As—net
where:
)] — edge function, as defined in 2.3.2;
ocr — buckling stress of the attached plating, in [N/mm?], as defined in 2.3.4;
Ocs — critical stress, in [N/mm?], equal to:
R
Opy =24 for o,, <—L5g,
€ 2
R & R
Oy =R,y S{I—LS] for op, > g
- Op4 2
Ocs — local Euler buckling stress, in [N/mm?], equal to:
2
Opy = 160000[—’w-"efj ;
h,
& — relative strain, as defined in 2.3.2.

2.3.7 Plate buckling

The load-end shortening curve ogs.. for the buckling of transversely stiffened panels composing the
hull girder transverse section is to be obtained from the following formula:

Ry p® 2
Gops =min] ®R,,, i(ﬁ 12 j n 0.1(1 —ij@ +l2J 2.3.7)
A Br l B

where:

() — edge function, as defined in 2.3.2;

D — coefficient, as defined in 2.3.3;

— plate breadth, in [m], taken as the spacing between the stiffeners;
/ — longer side of the plate, in [m].

3 ALTERNATIVE METHODS
3.1 General

3.1.1 Application of alternative methods is to be agreed by PRS prior to commencement.
Documentation of the analysis methodology and detailed comparison of its results are to be submitted for
review and acceptance. The use of such methods may require the partial safety factors to be recalibrated.
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3.1.2 The bending moment-curvature relationship, M_,, may be established by alternative methods.

Such models are to consider all the relevant effects important to the non-linear response with
due considerations of:

non-linear geometrical behaviour;

inelastic material behaviour;

geometrical imperfections and residual stresses (geometrical out-of-flatness of plate and stiffeners);

simultaneously acting loads:

— bi-axial compression;

— bi-axial tension;

— shear and lateral pressure;

boundary conditions;

interactions between buckling modes;

interactions between structural elements such as plates, stiffeners, girders, etc.;

post-buckling capacity;

Overstressed elements on the compression side of hull girder cross section possibly leading to local

permanent sets/buckle damages in plating, stiffeners etc. (double bottom effects or similar).

3.2 Non-linear finite element analysis

3.2.1 Advanced non-linear finite element analyses models may be used for the assessment of the hull
girder ultimate capacity. Such models are to consider the relevant effects important to the non-linear
responses with due consideration of the items listed in 3.1.2.

3.2.2  Particular attention is to be given to modelling the shape and size of geometrical imperfections. It
is to be ensured that the shape and size of geometrical imperfections trigger the most critical failure
modes.

List of amendments effective as of 1 July 2017
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